


Building Modern Networks

Create and manage cutting-edge networks and services

Steven Noble

BIRMINGHAM - MUMBAI



Building Modern Networks
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2017

Production reference: 1280717

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.
ISBN 978-1-78646-697-6

www.packtpub.com

http://www.packtpub.com


Credits

Author
Steven Noble

Copy Editor
Tom Jacob

Reviewer
George Wong

Project Coordinator
Kinjal Bari

Commissioning Editor
Kartikey Pandey

Proofreader
Safis Editing

Acquisition Editor
Namrata Patil

Indexer
Rekha Nair

Content Development Editor
Radhika Atitkar

Graphics
Kirk D'Penha

Technical Editor
Bhagyashree Rai

Production Coordinator
Melwyn Dsa



About the Author
Steven Noble has been working on computer networks for over 25 years. He has designed,
built, and installed networks for companies such as Foundation Health and Exodus
Communications. Steven has spent significant time in the open source community and is
the President of the Board of the Network Device Education Foundation (NetDEF) focusing
on Quagga, an open source routing stack and network testing. Steven has held roles from
network engineer to CTO and is currently working at Big Switch Networks as an Open
Networking Evangelist.



About the Reviewer
George Wong, Director of Business Development at Qualcomm, has over 20 years of both
wired and wireless networking experience. He is currently leveraging Qualcomm
technologies and developing ecosystems to accelerate IoT deployment in enabling the
vision of Smart Cities.

Prior to Qualcomm, George was at Broadcom for 9 years, growing the Ethernet portfolio he
managed five folds. Broadcom Ethernet switches were the first series of products used for
OpenFlow development. He has also held product management positions at Juniper, Bay
Networks, and other networking companies.

George holds both a master's in Engineering from California State University, Los Angeles,
and an MBA from Pepperdine University.



www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com. Did
you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details. At www.PacktPub.com, you can also read a
collection of free technical articles, sign up for a range of free newsletters and receive
exclusive discounts and offers on Packt books and eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt


Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /178646697X . If you'd like to join our team of regular
reviewers, you can email us at customerreviews@packtpub.com. We award our regular
reviewers with free eBooks and videos in exchange for their valuable feedback. Help us be
relentless in improving our products!

https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X
https://www.amazon.com/dp/178646697X


Table of Contents
Preface 1

Chapter 1: Open and Proprietary Next Generation Networks 7

Examples of next generation networking 8
Terms and concepts used in this book 9

Routing and switching concepts 9
Routers and switches 10
Control plane 10
Data plane 10

VLAN/VXLAN 11
Network design concepts 11

Local Area Network (LAN) 12
Metro Area Network (MAN) 12
Wide Area Network (WAN) 12
The leaf-spine design 12
The Clos network 13
The Benes network 14

Network controller concepts 15
Controllers 15
The OpenFlow controller 15
The Supervisor module 16
Juniper Routing Engine 16
Built-in processor 17
Facebook Wedge microserver 17

Routing protocols 17
Border Gateway Protocol (BGP) 17
Open Shortest Path First (OSPF) 20
Intermediate System to Intermediate System (IS-IS) 22
Enhanced Interior Gateway Routing Protocol (EIGRP) 23
Routing Information Protocol (RIP) 23

Cables 23
Copper cables 23
Fiber/hot pluggable cables 24
Breakout cables 24

What defines a modern network? 25
Modern network pieces 25

SDN 26
Next generation networking and hyperscale networks 26
Open networking hardware overview 27
Open networking software overview 28
Closed networking hardware overview 28



[ ii ]

Closed networking software overview 28
Network virtualization 28
NFV 28
Traffic engineering 29

The history of open hardware and software 29
Hardware providers 30
Hyperscale networking 31
Hyperscale hardware 31

Software 32
ONIE 32
Cisco's Bootloader 33
OpenBMC 33
Forwarding agents 33
Commercial products 33
Closed source NOS 33

IOS 34
Junos OS 34

Open source network operating systems 34
Open Network Linux (ONL) 34
OpenSwitch 34
SONiC 35

Software forwarding agents 35
SwitchDev 35
Indigo 35
FBOSS 35
SwitchD 36
Open Route Cache (ORC) 36

Software controllers 36
Next generation networking examples 37

Example 1 – migration from FDDI to 100Base-T 38
Example 2 – NGN failure (LANE) 38

Designing a modern network 39
Scoping 41
Greenfield and brownfield networks 42

Next generation hardware 42
NFV 42
Traffic engineering 43
Tools 43
Network monitoring 44

Network configuration 45
RANCID 45
Postman 45
Git 46

Summary 46

Chapter 2: Networking Hardware and Software 47



[ iii ]

Introducing the OCP 48
Accepted open compute networking hardware 49
Open compute networking software projects 51

ONIE 51
ONL 53
SONiC 53
SnapRoute 54

Network hardware designs from the OCP 57
Accton AS7712-32X 57
Facebook/Accton Wedge 100 58
Facebook's 6-pack and Backpack 59

Hardware from Cisco and Dell 59
Cisco Nexus 3232C 59
Cisco Nexus 3172 60
Cisco Nexus 9000 61
Dell Z9100-ON 63
Dell Z9500 64

Summary 65

Chapter 3: Exploring OpenFlow 66

Active and programmable network concepts 66
The history of OpenFlow 67

An overview of OpenFlow 68
How OpenFlow works 69
The growth of OpenFlow 70

OpenFlow 1.0 71
OpenFlow 1.1 72
OpenFlow 1.2 74
OpenFlow 1.3 75
OpenFlow 1.4 75
OpenFlow 1.5 76

Understanding OF-DPA – the open source OpenFlow agent from
Broadcom 77

Using an OpenFlow agent such as Indigo 78
OpenFlow capable OCP devices 79

How controllers interact with OpenFlow agents 79
OpenDaylight 80

Brocade SDN Controller 80
Cisco Open SDN Controller 83

ONOS 83
Summary 84

Chapter 4: Using REST and Thrift APIs to Manage Switches 85

API concepts 86



[ iv ]

REST 86
Apache Thrift 88
SnapRoute – a RESTful API programmable routing stack 89

Configuring an interface 96
Thrift 97

Summary 101

Chapter 5: Using Postman for REST API calls 102

Showing and modifying the configuration of SnapRoute's FlexSwitch
via Postman 103
Summary 110

Chapter 6: OpenFlow Deep Dive 111

History of OpenFlow 111
Before OpenFlow 112
After OpenFlow 112

OF-DPA 113
PicaOS 114
Open Network Linux 114

What issues does OpenFlow solve? 114
Internal workings of OpenFlow 115

Configuration 115
State machine 115
Message layer 116
System interface 116

How an OpenFlow controller and agent work together 116
Floodlight 117
Indigo 117

Connecting Indigo and Floodlight together 117
About OpenDaylight 121

Installing OpenDaylight 122
Installation platform 122

ONOS 133
Installing and configuring ONOS 133

Summary 135

Chapter 7: VMware NSX 136

NSX 136
NSX Manager 136
NSX Controller 137

The history of virtualization 137
Where VMware came in 137



[ v ]

The difference between NSX, ACI, and OVS 138
How to design a network using NSX 138

Review of the leaf-spine design 139
Installing VMware NSX 141

Installation steps 143
Working with NSX 147

A walkthrough of other NSX features 153
Summary 157

Chapter 8: Cisco ACI 158

ACI terminologies and concepts 159
Contracts 159
APIC configuration 159
Policy model 159
Logical model 159
Concrete model 159
Tenants 160

EPGs 160
ACI modes 162

ACI requirements 163
Network design using ACI 163
Configuration via the GUI 166
Configuration via the CLI 180
Configuration via wizards 182
Configuration via REST 184

Summary 185

Chapter 9: Where to Start When Building a Next Generation Network 186

Network design fundamentals 187
Multidimensional designs 187

PoD 187
Single-rack design 188
Multi-rack PoD design 189

Deciding on the hardware and software 192
Proprietary hardware-based designs 193
Open hardware-based designs 193
Support needs 194

24x7x365 full support 194
Business hours support 195

Request for Information (RFI) and Request for Quotes (RFQ) 195
Proof of Concept (PoC) 200

Designing a PoC 201



[ vi ]

Running a PoC 202
Finishing up a PoC 202

Summary 202

Chapter 10: Designing a Next Generation Network 203

Terminologies used in this chapter 203
Equipment racks – two post, four post, and enclosed 204
Airflow 205
New versus old or greenfield versus brownfield 205

Physical location 205
New location – greenfield 206
Old location – brownfield 206

Using RFI/RFQ information to design the network 207
Designing using the Cisco ACI 209
Designing using open network hardware 216

Assembling the network 220
Putting the parts in place 220

Migrating to the new network 221
Summary 223

Chapter 11: Example NGN Designs 224

Designs used in this chapter 224
Leaf-spine design 225
Core-aggregation design 225
Using open hardware and software 226
OpenFlow designs 226
Open hardware with SnapRoute 232

Configuring BGP 234
Building the network 235

Cisco ACI 242
Design basics 243

Open or proprietary network with NSX 245
Summary 246

Chapter 12: Understanding and Configuring Quality of Service 247

QoS 247
Network behavior without QoS 250
Generic traffic management 251

Layer 2 – focused QoS functionality 251
Layer 3 – focused QoS functionality 252

Utilizing QoS 254
Example of QoS in Linux 254



[ vii ]

Example of QoS in Windows 255
Hierarchical QoS 255

QoS in open source controllers 256
QoS in NSX 258
Summary 262

Chapter 13: Securing the Network 263

Terminology used in this chapter 263
Generic terms 264
Cisco ACI-specific terms 264
VMware NSX-specific terms 265

The evolution of security on the internet 265
Traffic steering 267

Demilitarized/Demarcation Zone (DMZ) 268
Designing a DMZ 270
Implementing the DMZ 270

Using network controllers to implement security 272
Open source controllers and security 273

Security using OpenDaylight 274
Commercial controllers and security 276

Security using Cisco ACI 276
ACI layer 4-7 service graph 278

Security using VMware NSX 279
Mirroring traffic to a monitoring device 283

Using a SPAN port 284
Using an inline tap 287

Summary 289

Index 290



Preface
Building Modern Networks will brush up your knowledge of modern networking concepts
and help you apply them to your software-defined infrastructure. Modern networking
revolves around the construction, design, and usage of network. What describes a modern
network? The latest development is that networking is the concept of Next Generation
Networks (NGNs), which is the USP of this book. The book further allows you to study
different types of NGNs with a deeper understanding.

As you master the NGN concepts, you will slowly move toward one of the major concepts
of networking—understanding OpenFlow. As rightly stated by the Open Networking
Foundation, OpenFlow is the first standard communications interface defined between the
control and forwarding layers of an SDN architecture. OpenFlow allows direct access to and
manipulation of the forwarding plane of network devices such as switches and routers,
both physical and virtual. You will not only learn OpenFlow but also explore the Thrift and
REST API in order to comprehend and control switches.

After OpenFlow, we will move on to grasp VMware NSX and ACI ideas. These concepts are
like the building blocks of modern network. Eventually, we will move to the best part of
learning all these concepts—implementing them! As we complete our take on initial
concepts, we will move to actually building a modern network! In the last section of the
book, we will apply all the notions of a modern network and design a NGN. As you learn
how to build a modern network, we will also secure the network while working on its
quality.

What this book covers
Chapter 1, Open and Proprietary Next Generation Networks, starts our journey from with
concepts of NGNs, including hardware, software, and controllers. Here, we will also
explore concepts such as open hardware, Open Source Network Operating Systems
(ONOS), proprietary hardware, proprietary Network Operating Systems (NOS), and open
source and proprietary software controllers.

Chapter 2, Networking Hardware and Software, discusses the multitude of open and closed
hardware and software systems available to network architects. We will discuss the Open
Compute Project (OCP), its goals, and members including Juniper Networks and Cisco,
who are both mostly in the proprietary networking space.



Preface

[ 2 ]

Chapter 3, Exploring OpenFlow, talks about programmable networks. Specifically, it
discusses how OpenFlow works, the different OpenFlow controllers available, and the
hardware that can use OpenFlow.

Chapter 4, Using REST and Thrift APIs to Manage Switches, discusses the API-driven
routing/switching applications. This concept allows you to have easier automation and
management. Instead of programming systems box by box, you will now be able to use a
central server or application to manage multiple systems.

Chapter 5, Using Postman for REST API Calls, teaches how to install Postman, use it to
configure, and get the configuration from a switch running SnapRoute's FlexSwitch
software. You will also consider how to program FlexSwitch using some of the extra
features of Postman.

Chapter 6, OpenFlow Deep Dive, teaches the history of OpenFlow, why it was invented, and
what issues it solves. We will also consider how OpenFlow works internally and how an
OpenFlow agent and controller work together. Finally, we will set up ODL and ONOS.

Chapter 7, VMware NSX, gives you an idea about VMware NSX, its history, features, and
use cases. You will now have a general understanding of what VMware NSX is and how
you can integrate it into an existing or new SDDC.

Chapter 8, Cisco ACI, talks about Cisco ACI and how to navigate the CLI, GUI, and RESTful
interfaces. We will also discuss how to set up a new APIC-driven network; configure the
management network, users, tenants, and interfaces; and add a BGP ASN to the
configuration.

Chapter 9, Where to Start When Building a Next Generation Network, talks about choosing
between open and proprietary hardware and software. We will cover the support levels
that can be expected and how your support needs may guide your decisions. We will cover
the RFI and PoC concepts and how to handle them.

Chapter 10, Designing a Next Generation Network, teaches about determining the size and
type of installation the equipment will be going in to. You will also learn about designing
the network hardware layout based on the RFI/RFQ information and finally, you will
understood how to assemble a final list of equipment to construct the NGN.



Preface

[ 3 ]

Chapter 11, Example NGN Designs, discusses designs using OpenFlow, SnapRoute, Cisco
ACI, and NSX to design and build networks. We refer back to the chapters examining each
to see how to do the deep configuration.

Chapter 12, Understanding and Configuring Quality of Service, explains QoS, how it works
and how to use it with NGN technologies. Examples of simple QoS on both Linux and
Windows will be shown along with the basic concepts of QoS in both OpenFlow and
VMware NSX. We will cover both flat and hierarchical QoS and their uses in both enterprise
and service provider networks.

Chapter 13, Securing the Network, teaches about general security concepts and how to apply
them to different next generation systems. Using the OPNFV project, we will look at
configuring switches using OpenFlow and virtual firewalls.

What you need for this book
To practice the examples and best practices explained in the book, you should have the
following:

Postman
Access VirtualBox or another pc based hypervisor running Linux(r) to work with

OpenDaylight
ONOS
OVS

Cisco Nexus switch running NX-OS
Indigo (included with Broadcom OF-DPA)
Floodlight
Access to a non-production VMware system running NSX
Access to a non-production Cisco network using APIC

Who this book is for
This book is for network engineers and network administrators who are taking their first
steps when deploying software-defined networks. Network architects will also find this
book useful when designing and building modern networks.



Preface

[ 4 ]

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.
Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"In Rescue mode, you can run the onie-nos-install command to install an image from a
web server or the onie-self-update command to upgrade ONIE".

A block of code is set as follows:

"NextHopList": [
  {
    "NextHopIntRef": "fpPort3",
    "NextHopIp": "192.168.30.2",
    "Weight": 0
  }
]

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

"NextHopList": [
  {
    "NextHopIntRef": "fpPort3",
    "NextHopIp": "192.168.30.2",
    "Weight": 0
  }
]

Any command-line input or output is written as follows:

curl -X GET http://10.1.1.1:8080/public/v1/state/BGPGlobal | python -m
json.tool

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Once you click on Send,
you should be logged in to the APIC server."

Warnings or important notes appear in a box like this.



Preface

[ 5 ]

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of. To send us general feedback, simply
email feedback@packtpub.com, and mention the book's title in the subject of your
message. If there is a topic that you have expertise in and you are interested in either
writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from
http://www.packtpub.com/sites/default/files/downloads/BuildingModernNetworks_Co

lorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k

s /c o n t e n t /s u p p o r t and enter the name of the book in the search field. The required
information will appear under the Errata section.

http://www.packtpub.com/authors
http://www.packtpub.com/sites/default/files/downloads/BuildingModernNetworks_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BuildingModernNetworks_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BuildingModernNetworks_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/BuildingModernNetworks_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support


Preface

[ 6 ]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at copyright@packtpub.com with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.



1
Open and Proprietary Next

Generation Networks
The term Next Generation Network (NGN) has been around for over 20 years, and refers
to the current state-of-the-art network equipment, protocols, and features. In this chapter,
we will discuss networking concepts such as hyperscale networking, software-defined
networking, network hardware, and software design along with a litany of network design
ideas utilized in NGN.

A big driver in NGN is the constant newer, better, and faster forwarding ASICs coming out
of companies such as Barefoot, Broadcom, Cavium, and Nephos (MediaTek). The advent of
commodity networking chips has shortened the development time for generic switches,
allowing hyperscale networking end users to build equipment upgrades into their network
designs.

At the time of writing, multiple companies have announced 6.4 Tbps switching chips. In
layman terms, a 6.4 Tbps switching chip can handle 64x100 GbE of evenly distributed
network traffic without losing any packets. To put the number in perspective, the entire
internet in 2004 was about 4 Tbps, so all of the internet traffic in 2004 could have crossed
this one switching chip without any issues (internet traffic 1.3 EB/month; h t t p ://b l o g s . c i

s c o . c o m /s p /t h e - h i s t o r y - a n d - f u t u r e - o f - i n t e r n e t - t r a f f i c ).

A hyperscale network is one that is operated by companies, such as
Facebook, Google, and Twitter, that add hundreds if not thousands of new
systems a month to keep up with demand.

http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic
http://blogs.cisco.com/sp/the-history-and-future-of-internet-traffic


Open and Proprietary Next Generation Networks

[ 8 ]

Examples of next generation networking
At the start of the commercial internet age (1994), software routers running on
minicomputers such as BBNs PDP-11-based IP routers designed in the 1970s were still in
use and hubs were simply dumb hardware devices that broadcast traffic everywhere.

At that time, the state of the art in networking was the Cisco 7000 series router, introduced
in 1993. The next generation router was the Cisco 7500 (1995), while the Cisco 12000 series
(gigabit) routers and the Juniper M40 were only concepts.

In this book, we will cover the current and near future of networking. When we say next
generation, we are speaking of the current state of the art and the near future of networking
equipment and software. For example, 100 GB Ethernet is the current state of the art, while
400 GB Ethernet is in the pipeline.

The definition of a modern network is that it is a network that contains one or more of the
following concepts:

Software-defined Networking (SDN)
Network design concepts
Next generation hardware
Hyperscale networking
Open networking hardware and software
Network Function Virtualization (NFV)
Highly configurable traffic management

Both open and closed network hardware vendors have been innovating at a high rate of
speed with the help of and due to hyperscale companies such as Google, Facebook, and
others who have the need for next generation high speed network devices. This provides
the network architect with a reasonable pipeline of equipment to be used in designs.

Google and Facebook are both companies with hyperscale networks. A hyperscale network
is one where the data stored, transferred, and updated on the network grows exponentially.
Hyperscale companies deploy new equipment, software, and configurations weekly or even
daily to support the needs of their customers. These companies have needs that are outside
of the normal networking equipment available, so they must innovate by building their
own next generation network devices, designing multi-tiered networks (like a three-stage
Clos network), and automating the installation and configuration of the next generation
networking devices.



Open and Proprietary Next Generation Networks

[ 9 ]

The need for hyperscalers is well summed up by Google's Amin Vahdat in a 2014 Wired
article: "We couldn't buy the hardware we needed to build a network of the size and speed we needed
to build."

In this chapter, we will cover the basics of modern or next generation networking. When
you are done with this chapter, you will have a good grasp of the following:

Network protocols
Next generation networking concepts
Network design planning
Open networking hardware and software
Proprietary networking hardware and software
Open source software controllers
Closed source software controllers
Network function virtualization
Traffic engineering concepts
Tools we will use in this book

Terms and concepts used in this book
Here you will find the definition of terms that we will use in this book. They have been
broken into groups of similar concepts.

Routing and switching concepts
In network devices and network designs, there are many important concepts to understand.
Here we'll begin with the way data is handled. The easiest way to discuss networking is to
look at the OSI layer and point out where each device sits.

The OSI layer with respect to routers and switches is as follows:

Layer 1 (Physical): This layer includes cables, hub, and switch ports. This is how
all of the devices connect to each other, including copper cables (CatX), fiber
optics, and Direct Attach Cable (DAC), which connect SFP ports without fiber.
Layer 2 (Data link layer): This layer includes the raw data sent over the links and
manages the Media Access Control (MAC) addresses for Ethernet.
Layer 3 (Network layer): This layer includes packets that have more than just
layer 2 data, such as IP, IPX (Novell Networks protocol), and AFP (Apple's
protocol).



Open and Proprietary Next Generation Networks

[ 10 ]

Routers and switches
In a network, you will have equipment that switches and/or routes traffic. A switch is a 
networking device that connects multiple devices, such as servers, provides local
connectivity, and provides an uplink to the core network. A router is a network device that
computes paths to remote and local devices, providing connectivity to devices across a
network. Both switches and routers can use copper and fiber connections to interconnect.
There are a few parts to a networking device: the forwarding chip, the TCAM, and the
network processor. Some newer switches have Baseboard Management Controllers
(BMCs) which manage the power, fans, and other hardware, lessening the burden on the
Network Operating System (NOS) to manage these devices.

Currently, routers and switches are very similar as there are many layer 3 forwarding
capable switches and some layer 2 forwarding capable routers. Making a switch layer 3
capable is less of an issue than making a router layer 2 forwarding as the switch already is
doing layer 2 and adding layer 3 is not an issue. However, a router does not do layer 2
forwarding in general, so it has to be modified to allow for ports to switch rather than route.

Control plane
The control plane is where all of the information about how packets should be handled is
kept. Routing protocols live in the control plane and are constantly scanning information
received to determine the best path for traffic to flow. This data is then packed into a simple
table and pushed down to the data plane.

Data plane
The data plane is where forwarding happens. In a software router, this would be done in
the device's CPU, and in a hardware router, this would be done using the forwarding chip
and associated memories:



Open and Proprietary Next Generation Networks

[ 11 ]

VLAN/VXLAN
A Virtual Local Area Network (VLAN) is a way of creating separate logical networks
within a physical network. VLANs are generally used to separate/combine different users
or network elements such as phones, servers, and workstations. You can have up to 4,096
VLANs on a network segment.

Virtual Extensible LAN (VXLAN) was created for large, dynamic isolated logical networks,
virtualized networks, and multiple tenant networks. You can have up to 16 million
VXLANs on a network segment versus 4,096 VLANs.

A VXLAN Tunnel Endpoint (VTEP) is a set of two logical interfaces—inbound, which 
encapsulates incoming traffic into VXLANs, and outbound, which removes the
encapsulation of outgoing traffic from VXLANs back to its original state.

Network design concepts
Network design requires the knowledge of the physical structure of the network so that the
proper design choices are made. For example, in a data center, you would have a local area
network; if you have multiple data centers near each other, they would be considered a
metro area network.



Open and Proprietary Next Generation Networks

[ 12 ]

Local Area Network (LAN)
A LAN is generally considered to be within the same building. These networks can be
bridged (switched) or routed. In general, LANs are segmented into areas to avoid large
broadcast domains.

Metro Area Network (MAN)
A MAN is generally defined as multiple sites in the same geographic area or city, that is, a
metropolitan area. A MAN generally runs at the same speed as a LAN, but is able to cover
larger distances.

Wide Area Network (WAN)
A WAN is essentially everything that is not a LAN or MAN. WANs generally use fiber 
optic cables to transmit data from one location to another. WAN circuits can be provided
via multiple connections and data encapsulations, including MPLS, ATM, and Ethernet.

Most large network providers utilize Dense Wavelength Division Multiplexing (DWDM)
to put more bits on their fiber networks. DWDM puts multiple colors of light onto the fiber,
allowing up to 128 different wavelengths to be sent down a single fiber.

DWDM has just entered open networking with the introduction of Facebook's Voyager
system.

The leaf-spine design

In a leaf-spine network design, there are leaf switches (that connect to the servers),
sometimes called Top of Rack (ToR) switches, connected to a set of spine switches (that
connect leaves), sometimes called End of Rack (EoR) switches:



Open and Proprietary Next Generation Networks

[ 13 ]

The Clos network

A Clos network is one of the ways to design a multi-stage network. Based on the switching
network design by Charles Clos in 1952, a three-stage Clos is the smallest version of a Clos
network. It has an ingress, a middle, and an egress stage. Some hyperscale networks use a
five-stage Clos, where the middle is replaced with another three-stage Clos. In a three-stage
Clos, there is an ingress, a middle ingress, a middle, a middle egress, and an egress stage.
All stages are connected to their neighbor, so in the example shown here, Ingress 1 is
connected to all four of the middle stages just as Egress 1 is connected to all four of the
middle stages.



Open and Proprietary Next Generation Networks

[ 14 ]

A Clos network can be built in odd numbers starting with three, so a five, seven, and so on
stage Clos is possible. For even-numbered designs, Benes designs are usable:

The Benes network

A Benes design is a non-blocking Clos design where the middle stage is 2 x 2 instead of N x
N. A Benes network can have even numbers of stages. Here is a four-stage Benes network:



Open and Proprietary Next Generation Networks

[ 15 ]

Network controller concepts
Here we will discuss the concepts of network controllers. Every networking device has a
controller, whether built in or external to manage the forwarding of the system.

Controllers
A controller is a computer that sits on the network and manages one or more network
devices. A controller can be built into a device, like the Cisco Supervisor module, or be
standalone, like an OpenFlow controller.

The controller is responsible for managing all of the control plane data and deciding what
should be sent down to the data plane.

Generally, a controller will have a Command-line Interface (CLI) and more recently a web
configuration interface. Some controllers will even have an Application Programming
Interface (API).



Open and Proprietary Next Generation Networks

[ 16 ]

The OpenFlow controller
An OpenFlow controller, as it sounds, is a controller that uses the OpenFlow protocol to
communicate with network devices. The most common OpenFlow controllers that people
hear about are OpenDaylight and ONOS. People who are working with OpenFlow would
also know of Floodlight and RYU.

The Supervisor module
A route processor is a computer that sits inside of the chassis of the network device you are
managing. Sometimes, the route processor is built in to the system, while at other times, it is
a module that can be replaced/upgraded. Many vendor multislot systems have multiple
route processors for redundancy.

An example of a removable route processor is the Cisco 9500 series Supervisor module.
There are multiple versions available, including revision A, with a 4-core processor and 16
GB of RAM, and revision B, with a 6-core processor and 24 GB of RAM.

Previous systems such as the Cisco Catalyst 7600 had options such as the SUP720
(Supervisor Module 720) of which they offered multiple versions—the standard SUP720
had a limited number of routes that it could support (256k) versus the SUP720 XL which
could support up to 1 M routes:

Juniper Routing Engine
In Juniper terminology, the controller is called a Route Engine (RE). These are similar to the
Cisco Route Processor/Supervisor modules. Unlike Cisco Supervisor modules, which utilize
special CPUs, Juniper's REs generally use common x86 CPUs. Like Cisco, Juniper multislot
systems can have redundant processors.



Open and Proprietary Next Generation Networks

[ 17 ]

Juniper has recently released the information about the Next Generation Route Engines
(NG-REs). One example is the new RE-S-X6-64G, a 6-core x86 CPU-based routing engine
with 64 GB DRAM and 2x64 GB SSD storage available for MX240/MX480/MX960. These
NG-REs allow for containers and other virtual machines to be run directly.

Built-in processor
When looking at single Rack Unit (RU) or pizza box design switches, there are some
important design considerations. Most 1 RU switches do not have redundant processors or
field replaceable route processors. In general, the Field Replaceable Units (FRUs) that the
customer can replace are power supplies and fans. If the failure is outside of the available
FRUs, the entire switch must be replaced in the event of a failure. With white-box switches,
this can be a simple process as white-box switches can be used in multiple locations of your
network, including the customer edge, provider edge, and core. Sparing (keeping a spare
switch) is easy when you have the same hardware in multiple parts of the network.

Recently, commodity switch fabric chips have come with built-in low power ARM CPUs
that can be used to manage the entire system, leading to cheaper and less power-hungry
designs.

Facebook Wedge microserver
The Facebook Wedge is different from most white-box switches as it has its controller as an
add-in module, the same board that is used in some of the OCP servers. By separating the
controller board from the switch, different boards can be put in place, such as higher
memory, faster CPUs, and different CPU types.

Routing protocols
A routing protocol is a daemon that runs on a controller and communicates with other
network devices to exchange route information. For this section, we will use common
words to demonstrate the way the routing protocol is working; these should not be
construed as the actual way that the protocols talk.

Border Gateway Protocol (BGP)
BGP is a path-vector-based External Gateway Protocol (EGP) that makes routing decisions
based on paths, network policies, or rules (route-maps on Cisco). Though designed as an
EGP, BGP can be used as both an interior (iBGP) and exterior (eBGP) routing protocol. BGP
uses keepalive packets (are you there?) to confirm that neighbors are still accessible.



Open and Proprietary Next Generation Networks

[ 18 ]

BGP is the protocol that is utilized to route traffic across the internet, exchanging routing
information between different Autonomous System Numbers (ASNs). An ASN comprises
all of the connected networks under the control of a single entity, such as Level 3, which has
Autonomous System 1 (AS1) or Sprint (AS1239).

When two different ASNs interconnect, BGP peering sessions are set up between two or
more network devices that have direct connections with each other.

In an eBGP scenario, AS1 and AS1239 would set up BGP peering sessions that would allow
traffic to route between their AS.

In an iBGP scenario, the same AS would peer with other routers with the same AS and
transfer the routes that are defined on the system. While iBGP is used internally in most
networks, iBGP is used in large corporate networks because other Interior Gateway
Protocols (IGPs) may not scale.

Consider these examples:

iBGP next-hop self: In this scenario, AS1 and AS2 are peered with each other
and exchange one prefix each. AS1 advertises 192.168.1.0/24 and AS2 advertises
192.168.2.0/24. Each network has two routers, one border router, which connects
to other ASNs, and one internal router, which gets its routes from the border
router. The routes are advertised internally with the next-hop set as the border
router. This is a standard scenario when you are not running an IGP inside, to
distribute the routes for the border router external interfaces:



Open and Proprietary Next Generation Networks

[ 19 ]

The conversation goes like this:

AS1 -> AS2: Hi AS2, I am AS1

AS2 -> AS1: Hi AS1, I am AS2

AS1 -> AS2: I have the following route, 192.168.1.0/24

AS2 -> AS1: I have received the route, I have 192.168.2.0/24

AS1 -> AS2: I have received the route

AS1 -> Internal Router AS1: I have this route, 192.168.2.0/24, you can reach it
through me at 10.1.1.1

AS2 -> Internal Router AS2: I have this route, 192.168.1.0/24, you can reach it
through me at 10.1.1.1

iBGP next-hop unmodified: In the next scenario, the border routers are the same,
but the internal routers are given a next-hop of the external (other AS) border
router:



Open and Proprietary Next Generation Networks

[ 20 ]

The last scenario is where you peer with a router server, a system that handles
peering, filtering the routes based on what you have specified you send. The
routes are then forwarded onto your peers with your IP as the next-hop:

Open Shortest Path First (OSPF)
OSPF is a relatively simple protocol. Different links on the same router are put into the
same or different areas. For example, you would use Area 1 for the interconnects between
campuses, but you would use another area, such as Area 10, for the campus itself. By
separating areas, you can reduce the amount of cross-talk that happens between devices.

There are two versions of OSPF, v2 and v3. The main difference between v2 and v3 is that
v2 is for IPv4 networks and v3 is for IPv6 networks:



Open and Proprietary Next Generation Networks

[ 21 ]

When there are multiple paths that can be taken, the cost of the links must be taken into
account. In the following diagram, you can see where there are two paths, one has a total
cost of 20 (5+5+10) and the other, 16 (8+8), so the traffic will take the lowest-cost link:



Open and Proprietary Next Generation Networks

[ 22 ]

Intermediate System to Intermediate System (IS-IS)
IS-IS is a link-state routing protocol, operating by flooding link-state information
throughout a network of routers using Network Entity Titles (NETs). Each IS-IS router has
its own database of the network topology, built by aggregating the flooded network
information. IS-IS is used by companies who are looking for fast convergence, scalability,
and rapid flooding of new information.

IS-IS uses the concept of levels instead of areas as in OSPF. There are two levels in IS-IS,
Level 1 (area) and Level 2 (backbone). A Level 1 Intermediate System (IS), keeps track of
the destinations within its area, while a Level 2 IS keeps track of paths to the Level 1 areas:



Open and Proprietary Next Generation Networks

[ 23 ]

Enhanced Interior Gateway Routing Protocol (EIGRP)
EIGRP is Cisco's proprietary routing protocol. It is hardly ever seen in current networks, but
if you see it in yours, then you need to plan accordingly. Replacing EIGRP with OSPF is
suggested so that you can interoperate with non-Cisco devices.

Routing Information Protocol (RIP)
If RIP is being used in your network, it must be replaced during the design. Most newer
routing stacks do not support RIP. It is one of the original routing protocols, using the
number of hops (routed ports) between the device and remote location to determine the
optimal path. RIP sends its entire routing database out every 30 seconds. When routing
tables were small, many years ago, RIP worked fine. With larger tables, the traffic bursts
and the resulting recomputing by other routers in the network causes routers to run at
almost 100 percent CPU all the time.

Cables
Cables will be mentioned throughout the book, so we will review the major types here.

Copper cables
Copper cables have been around for a very long time. Originally, network devices were
connected using coax cable (the same cable used for television antennas). These days, there
are a few standard cables that are used. These are the different RJ45 cables:

Cat 5 : This is a 100 MB capable cable, used for both 10 MB and 100 MB
connections
Cat 5e: This is a 1 GbE capable cable, but not suggested for 1 GbE networks (Cat 6
is better and the price difference is nominal)
Cat 6: This is a 1 GbE capable cable, and it can be used for any speed, at or below
1 GbE, including 100 MB and 10 MB



Open and Proprietary Next Generation Networks

[ 24 ]

Fiber/hot pluggable cables
The following is the list of fiber/hot pluggable cables and ports:

Small Form-factor Pluggable (SFP):
SFP: This is capable of up to 1 GbE connections
SFP+: This is of the same size as SFP, and is capable of up to 10 Gb
connections
SFP28: This is of the same size as SFP, capable of up to 25 Gb
connections
Quad Small Form-factor Pluggable (QSFP): This is a bit wider
than SFP, but capable of multiple GbE connections
QSFP+: This is of the same size as QSFP, and is capable of 40 GbE
as 4x10GbE on the same cable
QSFP28: This is of the same size as the QSFP, capable of 100 GbE

Direct Attach Cable (DAC): Has a built in SFP or QSFP type connector and goes
directly into the port cage on the switch.
Fiber optic cable: Needs a SFP or QSFP type connector in the port cage to connect
into the switch. Some switches may have fixed fiber optic ports, but this is
uncommon in current generation products.

Breakout cables
As routers and switches continue to become more dense, where the number of ports on the
front of the device can no longer fit in the space, manufacturers have moved to what we call
breakout cables. For example, if you have a switch that can handle 3.2 Tbps of traffic, you
need to provide 3200 Gbps of port capacity. The easiest way to do that is to use 32 100 Gb
ports, which will fit on the front of a 1 U device. You cannot fit 128 10 Gb ports without
using either a breakout patch panel (which will then use another few RUs) or a breakout
cable.

For a period of time in the 1990s, Cisco used RJ21 connectors to provide up to 96 Ethernet
ports per slot:

Network engineers would then create breakout cables to go from the RJ21 to RJ45.



Open and Proprietary Next Generation Networks

[ 25 ]

These days, we have both DAC and fiber breakout cables. For example, here you can see a
1x4 breakout cable, providing 4x10 G or 25 G ports from a single 40 G or 100 G port:

If you build a LAN network that only includes switches that provide layer
2 connectivity, any devices you want to connect need to be in the same IP
block. If you have a router in your network, it can route traffic between IP
blocks.

What defines a modern network?
There are a litany of concepts that define a modern network, from simple principles to full
feature sets.

In general, a next-generation data center design enables you to move to a widely distributed
non-blocking fabric with uniform chipset, bandwidth, and buffering characteristics in a
simple architecture.

In one example, to support these requirements, you would begin with a true three-tier Clos
switching architecture with ToR, spine, and fabric layers to build a data center network.
Each ToR would have access to multiple fabrics and have the ability to select a desired path
based on application requirement or network availability.

Following the definition of a modern network from the introduction, here we lay out the
general definition of the parts.



Open and Proprietary Next Generation Networks

[ 26 ]

Modern network pieces
Here we will discuss the concepts that build an NGN.

SDN
SDNs can be defined in multiple ways. The general definition of a SDN is one which can be
controlled as a singular unit instead of on a system-by-system basis. The control plane,
which would normally be in the device and uses routing protocols, is replaced with a
controller. SDNs can be built using many different technologies, including OpenFlow,
overlay networks, and automation tools.

Within an SDN, you will have the concept of controllers. There are four controllers that we
will talk about in this book:

OpenDaylight and ONOS, which are OpenFlow-based open source controllers
Application Policy Infrastructure Controller (APIC) from Cisco
NSX from VMware

Next generation networking and hyperscale networks
As we mentioned in the introduction, 20 years ago, NGN hardware would have been the 
Cisco GSR (officially introduced in 1997) or the Juniper M40 (officially released in 1998).
Large Cisco and Juniper customers would have been working with the companies to help
come up with the specifications and determining how to deploy the devices (possibly Alpha
or Beta versions) in their networks:



Open and Proprietary Next Generation Networks

[ 27 ]

Today, we can look at the hyperscale networking companies to see what a modern network
looks like. A hyperscale network is one where the data stored, transferred, and updated on
the network grows exponentially. Technology such as 100 Gb Ethernet, SDN, open
networking equipment, and software are being deployed by hyperscale companies.

Open networking hardware overview
Open hardware has been around for about 10 years, first in the consumer space and more
recently in the enterprise space. Enterprise open networking hardware companies such as
Quanta and Accton provide a significant amount of the hardware currently utilized in
networks today. Companies such as Google and Facebook have been building their own
hardware for many years. Facebook's routers such as the Wedge 100 and Backpack are
available publicly for end users to utilize.

Some examples of open networking hardware are as follows:

Dell S6000-ON: This is a 32x40 G switch with 32 QSFP+ ports on the front
Quanta LY8: This is a 48x10 G + 6x40 G switch with 48 SFP+ ports and 6 QSFP+
ports
Facebook Wedge 100: This is a 32x100 G switch with 32 QSFP28 ports on the front



Open and Proprietary Next Generation Networks

[ 28 ]

Open networking software overview
To use open networking hardware, you need an operating system. The operating system
manages the system devices such as fans, power, LEDs, and temperature. On top of the
operating system, you will run a forwarding agent. Examples of forwarding agents are
Indigo, the open source OpenFlow daemon, and Quagga, an open source routing agent.

Closed networking hardware overview
Cisco and Juniper are the leaders in the closed hardware and software space. Cisco
produces switches such as the Nexus series (3000, 7000, and 9000) with 9000 programmable
by ACI. Juniper provides the MX series (480, 960, and 2020) with 2020 being the highest end
forwarding system they sell.

Closed networking software overview
Cisco has multiple NOSes including IOS, NX-OS, and IOS-XR. All Cisco NOSes are closed
source and proprietary to the system that they run on. Cisco has what the industry call an
industry standard CLI, which is emulated by many other companies.

Juniper ships a single NOS, Junos, which can install on multiple different systems. Junos is a
closed source BSD-based NOS. The Junos CLI is significantly different from IOS and is more
focused on engineers who program.

Network virtualization
Network virtualization, not to be confused with NFV, is the concept of recreating the
hardware interfaces that exist in a traditional network in software. By creating a software
counterpart to the hardware interfaces, you decouple the network forwarding from the
hardware.

There are a few companies and software projects that allow the end user to enable network
virtualization. The first one is NSX, which comes from the same team that developed Open
vSwitch (OVS) called Nicira, which was acquired by VMware in 2012. Another project is
Big Cloud Fabric by Big Switch Networks, which utilizes a heavily modified version of
Indigo, an OpenFlow controller.



Open and Proprietary Next Generation Networks

[ 29 ]

NFV
NFV can be summed up by the statement, due to recent network focused advancements in PC
hardware, any service able to be delivered on proprietary, application specific hardware should be able
to be done on a virtual machine, essentially, on routers, firewalls, load balancers, and other
network devices, all running virtually on commodity hardware.

Traffic engineering
Traffic engineering is a method of optimizing the performance of a telecommunications
network by dynamically analyzing, predicting, and regulating the behavior of data
transmitted over that network.

The history of open hardware and software
While Open-source software (OSS) has been around for decades, the concept of open
networking hardware has not. By combining OSS with open networking hardware, end
users are able to create their own network devices that provide the connectivity and
services that are necessary for them.

One of the first companies to come out with open networking hardware was Quanta
Computer. In 2009, Pronto started to provide open networking switches including the LB4G
and LB9(A). These switches were used by the OpenFlow team at Stanford to develop
OpenFlow on hardware. Sold under the Pronto Networks name (now, Pica8), these
switches were used by companies such as Google for their SDN projects.

In 2011, Facebook started the Open Compute Project (OCP). The goal of the OCP was to
provide a place where companies could share hardware and software designs. These
designs are used by multiple hardware manufacturers to build OCP specification hardware.
In 2013, the OCP introduced the networking project, where networking vendors could
submit open hardware designs for network switches.

Companies such as Big Switch Networks, Cumulus Networks, and Pluribus Networks
utilize open switching hardware built by companies such as Accton, Dell, and Quanta to
create fully open and malleable networks. OSS projects such as Open Network Linux,
OpenSwitch, and OS10 provide a open software base for these devices on which end users
can build their own tools.

One of the most important software tools is Open Network Install Environment (ONIE),
which is a small Linux image that allows end users to install a NOS onto a network device
such as a switch.



Open and Proprietary Next Generation Networks

[ 30 ]

Some examples of open source networking software are as follows:

Facebook's FBOSS, a Thrift-based daemon that manages the forwarding of the
switch by interacting with Broadcom's OpenNSL. FBOSS has no routing
capabilities of its own and requires all information to be provided via a
configuration file and Thrift API calls.
Microsoft's Software for Open Networking in the Cloud (SONiC) uses a
Quagga-based routing daemon talking to Switch Abstraction Interface (SAI)
and runs on a few open hardware switches including the Dell S6000-ON and the
Mellanox SN2700.
Google have also designed their own switches since 2004, but have not released
the designs or software information. In 2012, one of their switches was
accidentally shipped to the wrong location and appeared on the internet.

Hardware providers
Accton has been quite active in the open hardware space, providing a multitude of designs,
including some designed by Facebook, such as the Wedge. The current generation Facebook
Wedge is the Wedge 100, providing 32 ports of 100 G. Accton also has its own switches,
such as the AS7716, that provide 32 ports of 100 G:



Open and Proprietary Next Generation Networks

[ 31 ]

Most open networking hardware designs are based around switching ASICs from
Broadcom, but over the past few years, other companies such as Barefoot Networks,
Cavium, and Mellanox have brought out more open designs. Barefoot is a good example of
a fully open design, where they utilize a specific language, called P4, to program the
forwarding hardware.

The Facebook designed switches are focused on Facebook's own design needs. The
Facebook Wedge 100 runs a standard Linux image with drivers for the Broadcom switching
chips. On top of the software stack, Facebook uses an OSS project called FBOSS to control
the switches via a Thrift API. This allows Facebook to manage their switches the same way
they manage their servers.

Facebook contracted with both Accton and Quanta to build the Wedge 40. The Wedge 40 is
built from commodity components and are reused from other Facebook systems. The CPU
complex and Board Management Controllers (BMC) come from the Facebook servers.

Hyperscale networking
The next generation networking devices that have come from the needs of hyperscale
networking companies have a few commonalities:

In general, the configuration and operation of these devices have been designed
to be automated or managed from a central controller
Automation is done via tools that use everything from screen scraping to
utilizing Thrift or REST APIs
Most of these hyperscale-focused next generation networking devices have one or
more parts that are traditionally found on servers, such as a BMC, powerful Intel
processors, and large solid state storage drives

Hyperscale hardware
The equipment used in hyperscale networks can be from established vendors, such as Cisco
and Juniper, or from open networking companies, such as Edgecore and Quanta. Dell is a
special case as they offer both closed and open versions of their switching hardware,
designated with a -ON at the end, for example, the S6000-ON and a 32x40G switch.
Mellanox, which started as a storage network vendor, has been building open networking
switches, including the SN2700, a 32x100 G switch, and the SN2100, a 16x100 G switch.



Open and Proprietary Next Generation Networks

[ 32 ]

Many open networking designs come out of specific needs of the hyperscale companies and
some even come from the hyperscale companies. Facebook have open sourced five
switches, all designed to meet their needs:

Wedge 40: This is a 16x40 G switch with a BMC—running FBOSS
6-pack: This is a 128x40 G modular switch with multiple BMCs—running FBOSS
Wedge 100: This is a 32x100 G switch with a BMC—running FBOSS
Backpack: This is a 128x100 G modular switch with multiple BMCs—running
SnapRoute
Voyager: This is a open transponder for DWDM networks, which includes both
12x100 G Ethernet and 4x200 G DWDM ports—running an FBOSS-like daemon:

Software
Software is the heart of any network: no matter how sophisticated hardware gets, software
is necessary to utilize the hardware. Here we will discuss the software components behind
open hardware initiatives.

ONIE
In order to use open hardware, there needs to be an installation environment. Currently,
ONIE is the standard. ONIE was developed by Cumulus Networks in coordination with Big
Switch Networks, and it provides a GRUB or U-Boot installable miniature Linux
environment from which NOS can be installed on the system.



Open and Proprietary Next Generation Networks

[ 33 ]

Cisco's Bootloader
The Bootloader is a small bootable software image that is flashed to Cisco hardware. The
Bootloader initializes the system and brings up the devices necessary to load the main
software, IOS.

OpenBMC
Open source projects such as OpenBMC have been released to provide the software to run
on the BMC and system processor.

Forwarding agents
Networking companies such as RTBrick and SnapRoute have been formed to provide API
manageable networking stacks. SnapRoute provides an entire forwarding infrastructure
including L2/L3 and forwarding chip drivers. SnapRoute have written their project in Go,
Google's language of choice.

Commercial products
Software-defined products such as Cisco's Application Centric Infrastructure (ACI) and
VMware's NSX have come out of large companies such as Cisco and VMware along with
products such as Big Cloud Fabric (BCF) from Big Switch Networks.

Open NOS companies such as Cumulus Networks and Pica8 have released software for
open switches. Pica8 also provides a full solution, selling switches with PicOS installed.
Pica8 originally provided switches under the Pronto name, but now sells them under the
Pica8 name, for example, the P-5401—32x40 G switch.

Closed source NOS
Software from companies such as Cisco and Juniper are considered closed source as they do
not include access to the source code. Cisco has multiple operating systems, including their
original Internetwork Operating System (IOS), not to be confused with Apple's recent use
for their iDevices.



Open and Proprietary Next Generation Networks

[ 34 ]

IOS
IOS is a binary blob operating system that is loaded into memory on boot of Cisco devices.
IOS is easy to upgrade since all of the configuration information is kept separate and the
IOS filesystem is immutable. Installing a new IOS version simply requires that you upload
it to the device and point the configuration to load it. IOS uses a CLI that is considered to be
the standard interface and replicated by many other vendors.

Junos OS
Juniper Network Operating System (Junos), based on FreeBSD, has not changed
significantly since its introduction in the mid-90s. While more complex than IOS, Junos won
many customers with its ability to be used by power users.

Open source network operating systems
Once you have your hardware picked out, you need an NOS. An NOS is what runs on your
switch and allows it to forward packets. Companies such as Cumulus Networks and Pica8
sell full NOSes with L2 and L3 forwarding capability. In the OSS world, there are a few
choices, including Open Network Linux (ONL), OpenSwitch, and SONiC.

Open Network Linux (ONL)
ONL is a project started by Rob Sherwood, previously of Big Switch Networks and now at
Facebook. The goal was to provide a simple, clean Linux-based open source network
operating system. ONL provides a ONIE compatible installable NOS, on which the user can
install their own forwarding agents. At the time of writing, ONL supported ~35 switches
from Alpha Networks, Dell, DNI, Edgecore, Mellanox, Quanta, and others.

OpenSwitch
OpenSwitch is a project started by HP (now HPE) to provide a full NOS using Quagga as
the base and creating a full layer 2 / layer 3 platform on top of a Linux base.

The project used a central database based on OVSDB and required all data to be exchanged
through the database rather than directly between themselves. The design was complex and
eventually supported ~3 switches directly, rebranded HP versions of Edgecore switches,
and unofficially supported ~4 more that were ported by end user or vendors.

OpenSwitch started pivoting at the time of this book. The Quagga design with OVSDB was
replaced with SnapRoute, an API-driven routing stack running on Dell's OS10 Open
Edition, a Debian-based NOS.



Open and Proprietary Next Generation Networks

[ 35 ]

SONiC
SONiC is a project that Microsoft started to run inside their own network on white-box
switches. It uses Quagga for forwarding and Redis as a database to store information and
exchange data between processes. SONiC runs on top of Debian 8 and can be run on Dell
OS10 or ONL.

At the time of writing, SONiC supported more switches than OpenSwitch, including some
Edgecore, Arista, and Mellanox switches.

Software forwarding agents
If you need to run a forwarding agent on a Linux-based NOS, there are a few options, of 
which most, other than Mellanox's SwitchDev implementation, have proprietary / closed
source parts. Broadcom provides both OF-DPA and OpenNSL publicly as binary-only
options for programming their ASICs. Cavium offers an SAI interface to their SDK, but it is
not publicly available at the time of writing.

SwitchDev
To quote the Linux kernel documentation, The Ethernet switch device driver model (switchdev)
is an in-kernel driver model for switch devices which offload the forwarding (data) plane from the
kernel. Essentially, it is an open Netlink listener that allows for the offloading of forwarding
information to hardware. It can also be used for soft switches such as OVS and offload
network interface cards using SR-IOV.

From the open switching side, currently, only Mellanox supports SwitchDev for their
10/25/40/50/100G switches. Broadcom only supports its consumer-grade switches such as
those in access points and home routers.

Indigo
Indigo is a OpenFlow-based forwarding agent that runs on the NOS to provide forwarding.
Introduced in 2008 by Stanford University, Indigo is the base for Big Switch Networks
OpenFlow daemon, the ON.Lab CORD project, and Indigo is integrated into OF-DPA, the
Broadcom OpenFlow driver.

The concept of OpenFlow is simple, program forwarding tables in hardware and software
switches using a standardized interface. We will cover OpenFlow in detail later in this
book.



Open and Proprietary Next Generation Networks

[ 36 ]

FBOSS
While specifically designed for the Facebook Wedge switches, FBOSS provides a Thrift-
based API with integration into Broadcom's Open Network Switch Layer (OpenNSL).
FBOSS allows for static configuration of interfaces and forwarding entries. FBOSS also has a
Netlink listener available, which allows for the end user to run programs such as Quagga or
FRR on the system.

SwitchD
SwitchD is the Cumulus Networks SDK programmer. It is available with the purchase of
Cumulus Linux, a Linux-based NOS.

Open Route Cache (ORC)
ORC is a daemon provided for ONL. It is a very simple Netlink translator that talks directly
to the Broadcom SDK. ORC only supports IPv4 and is meant to provide a guide on how to
write your own forwarding platform.

Software controllers
There are two types of software controllers. The first type uses OpenFlow to manage the
hardware in the network. OpenFlow is an open standard that is easily utilized to manage
the forwarding of traffic. The second type uses a proprietary API to manage the hardware
in the network. The API can be open or closed, but will not be generic.

An OpenFlow controller manages multiple networking devices by programming switches
using the OpenFlow protocol. OpenFlow-based network devices run a OpenFlow daemon
such as Indigo, which translates the OpenFlow commands into switch forwarding data.

There are branded and unbranded versions of OpenDaylight available. Brocade makes the
Brocade Virtual Controller (BVC). The OpenDaylight foundation releases unbranded 
versions of the software. You can also obtain OpenDaylight from Cisco.

The following diagram shows a test setup for OpenDaylight using two switches:



Open and Proprietary Next Generation Networks

[ 37 ]

A good example of a open source, open API design is what the company called SnapRoute
is doing with their product FlexSwitch. FlexSwitch uses a REST-based API to program the
L2/L3 forwarding entries.

Next generation networking examples
In my 25 or so years of networking, I have dealt with a lot of different networking
technologies, each iteration (supposedly) better than the last. Starting with Thinnet
(10BASE2), moving through ARCNET, 10BASE-T, token ring, ATM to the Desktop, Fiber
Distributed Data Interface (FDDI), and onward. Generally, the technology improved for
each system until it was swapped out. A good example is the change from a literal ring for
token ring to a switching design, where devices hung off of a hub (as in 10BASE-T).



Open and Proprietary Next Generation Networks

[ 38 ]

ATM to the Desktop was a novel idea, providing up to 25 Mbps to connected devices, but
the complexity of configuring and managing it was not worth the gain.

Today, almost everything is Ethernet, as shown by the Facebook Voyager DWDM system,
which uses Ethernet over both traditional SFP ports and the DWDM interfaces. Ethernet is
simple, well supported, and easy to manage.

Example 1 – migration from FDDI to 100Base-T
During late 1996 and early 1997, the Exodus Network used FDDI rings to connect the main
routers together at 100 Mbps. As the network grew, we had to decide between two 
competing technologies, FDDI switches and Fast Ethernet (100Base-T), both providing 100
Mbps. FDDI switches from companies such as DEC (FDDI Gigaswitch) were used in most
of the Internet Exchange Points (IXPs) and worked reasonably well with one minor issue,
Head-of-Line Blocking (HoLB), which also impacted other technologies. HoLB occurs
when a packet is destined for an interface that is already full, so a queue is built; if the
interface continues to be full, eventually, the queue will be dropped.

While we were testing the DEC FDDI Gigaswitches, we were also in deep discussions with
Cisco about the availability of Fast Ethernet (FE) and working on designs. Because FE was
new, there were concerns about how it would perform and how we would be able to build
a redundant network design.

In the end, we decided to use FE, connect the main routers in a full mesh, and use routing
protocols to manage failover.

Example 2 – NGN failure (LANE)
During the high-growth period at Exodus Communications, there was a request to connect
a new data center to the original one and allow customers to put servers in both locations
using the same address space. To do this, we chose LAN Emulation (LANE), which allows
an ATM network to be used like a LAN. On paper, LANE looked like a great idea, the
ability to extend the LAN so that customers could use the same IP space in two different
locations. In reality, it was very different.

For hardware, we were using Cisco 5513 switches, which provided a combination of
Ethernet and ATM ports.



Open and Proprietary Next Generation Networks

[ 39 ]

There were multiple issues with this design:

First, the customer is provided with an Ethernet interface, which runs over an
ATM optical interface. Any error on the physical connection between switches or
the ATM layer would cause errors on the Ethernet layer.
Second, monitoring was very hard, when there were network issues, you had to
look in multiple locations to determine where the errors were happening.

After a few weeks, we did a midnight swap, putting Cisco 7500 routers in to replace the
5500 switches and moving customers onto new blocks for the new data center.

Designing a modern network
When designing a new network, some of the following factors might be important to you:

Simple, focused, yet non-blocking IP fabric
Multistage parallel fabrics based on the Clos network concept
Simple merchant silicon
Distributed control plane with some centralized controls
Wide multi-path (ECMP)
Uniform chipset, bandwidth, and buffering
1:1 oversubscribed (non-blocking fabric)
Minimizing the hardware necessary to carry east–west traffic
Ability to support a large number of bare metal servers without adding an
additional layer
Limiting fabric to a five-stage Clos within the data center to minimize lookups
and switching latency
Support host attachment at 10 G, 25 G, 50 G, and 100G Ethernet
Traffic management

In a modern network, one of the first decisions is whether you will use a centralized
controller or not. If you use a centralized controller, you will be able to see and control the
entire network from one location. If you do not use a centralized controller, you will need to
either manage each system directly or via automation. There is a middle space where you
can use some software-defined network pieces to manage parts of the network, such as an
OpenFlow controller for the WAN or VMware NSX for your virtualized workloads.



Open and Proprietary Next Generation Networks

[ 40 ]

Once you know what the general management goal is, the next decision is whether to use
open, proprietary, or a combination of both open and proprietary networking equipment.
Open networking equipment is a concept that has been around less than a decade and
started when very large network operators decided that they wanted better control of the
cost and features of the equipment in their networks. Google is a good example. In the
following figure, you can see how Facebook used both their own hardware, 6-
pack/Backpack, and legacy vendor hardware for their interoperability and performance
testing:

Google wanted to build a high-speed backbone, but were not looking to pay the prices that
the incumbent proprietary vendors such as Cisco and Juniper wanted. Google set a price
per port (1 G/10 G/40 G) that they wanted to hit and designed equipment around that.
Later, companies such as Facebook decided to go in the same direction and contracted with
commodity manufacturers to build network switches that met their needs.

Proprietary vendors can offer the same level of performance or better using their massive
teams of engineers to design and optimize hardware. This distinction even applies on the
software side, where companies such as VMware and Cisco have created SDN tools such as
NSX and ACI.



Open and Proprietary Next Generation Networks

[ 41 ]

With the large amount of networking gear available, designing and building a modern
network can appear to be a complex concept. Designing a modern network requires
research and a good understanding of networking equipment. While complex, the task is
not hard if you follow the guidelines listed in this section.

These are a few of the stages of planning that need to be followed before the modern
network design is started:

The first step is to understand the scope of the project (single site, multisite,1.
multicontinent, and multiplanet).
The second step is to determine whether the project is a green field (new) or2.
brown field deployment (how many of the sites already exist and will/will not be
upgraded?).
The third step is to determine whether there will be any SDN, NGN, or open3.
networking pieces.
Finally, it is key that the equipment to be used is assembled and tested to4.
determine whether the equipment meets the needs of the network.

Scoping
The project scope is one of the most important pieces of information needed. The project
scope can go from a single device in one location to hundreds or even thousands of devices
across multiple continents. Understanding the project scope provides a guideline on which
to base the network design and hardware/software needs.

If the network is being designed for internal use, then looking at other locations should give
information about the best practices of the company the network is being designed for. If
the network is being designed for an external company, then it is useful to ask for
documentation, hardware lists, and even a tour of a current site so that the concept can be
understood.

This is not meant to be an exhaustive list, but there are a few things that need to be
understood when designing the network:

Is the network all internal?
Does the network have a DMZ?
Does the network have multiple internet connections?
Does the network have storage and compute separate or together?
Does the network need to support iSCSI or other SAN protocols?



Open and Proprietary Next Generation Networks

[ 42 ]

Does the network use MPLS, SD-WAN, or other tunneling technologies?
Does the network have multiple Points of Presence (POP), and how large is a
POP?
Does the network use containers? If so, does it have a container-specific network?

At the end of the book, you will find a generic check sheet to scope the project.

Greenfield and brownfield networks
A greenfield network is a site where there is no networking equipment currently. For a
greenfield deployment, there are a lot of options, but the needs of the network musts be
clearly understood. In a perfect situation, the site would be completely malleable, allowing
for power, cooling, and infrastructure to be built out to meet the needs of the design. Since a
perfect situation is not always possible, taking inventory of the infrastructure is necessary
before a design can be committed.

At the end of the book, you will find a generic check sheet that provides an overview of
what should be understood about the site.

Next generation hardware
If you plan to use any next generation hardware, you will need to do some research and
show due diligence. Since next generation hardware generally means equipment that has
not been out for very long (or may not be out in the public), there will be little to no public 
information or testing of the equipment. You will want to schedule a Proof of Concept
(PoC) to be done with the hardware you expect to use.

If you are using open next generation hardware, you may be able to use reference
customers to understand what designs are being used and what features.

NFV
While PC-based network devices have been available since the 80s, they were generally
used by small companies and networking enthusiasts who didn't or couldn't afford to buy a
commercial-based solution. In the last few years, many drivers have brought PC-based
networking devices back into the limelight, including—Ethernet as the last mile, better
network interface cards, and Intel's focus on networking processing in its last few
generation of chips.



Open and Proprietary Next Generation Networks

[ 43 ]

Today, many vendors are producing PC-based network devices with advancements in
packet handling within Intel's processors, allowing processor cores to be re-programmed
into network processors, and allowing PC-based network devices to push tens or even
hundreds of Gbps.

Some of the values of the NFV concept are speed, agility, and cost reduction. By centralizing
designs around commodity server hardware, network operators can do the following:

Do a single PoP/site design based on commodity compute hardware:
Avoiding designs involving one-off installations of appliances that
have different power, cooling, and space needs simplifies planning

Utilize resources more effectively:
Virtualization allows providers to allocate only the necessary
resources needed by each feature/function

Deploy network functions without having to send engineers to each site:
Truck rolls are costly both from a time and money standpoint

Achieve reductions in OpEX and CapEX
Achieve reduction of system complexity

Traffic engineering
Traffic engineering and traffic shaping is the concept of detecting and prioritizing different
types of network traffic. Once prioritized, different bandwidth allocations can be provided
to the traffic. Prioritization can be strict or loose and as a set amount or a variable amount
(percentage).

Traffic engineering can be done in a few different ways, including MPLS TE tunnels,
Virtual Circuits (VCs), and Quality of Service (QoS).

Tools
There are many tools that we will discuss and utilize in this book, tools to monitor
networks, tools to configure networks, and everything in between.



Open and Proprietary Next Generation Networks

[ 44 ]

Network monitoring
Monitoring the network is highly important and has been the basis for quite a few great
open-source tools such as Nagios, Monit, Sensu, and Zabbix.

Nagios is one of the older and most mature open source monitoring tools, providing a core
infrastructure and a set of plugins for different devices:

The generic Nagios display shows alerts and details about the network status.



Open and Proprietary Next Generation Networks

[ 45 ]

Network configuration
The following tools will help you in network configuration.

RANCID
While we are working with the network, it will be useful to keep logs of changes in
configurations. Really Awesome New Cisco confIg Differ (RANCID) is a free tool that can
log in to many different types of systems, not just Cisco (though it started out that way).

You can find more about RANCID at h t t p ://w w w . s h r u b b e r y . n e t /r a n c i d

/.

Postman
Postman is a program that works with APIs. It is available at h t t p ://w w w . g e t p o s t m a n . c o m .
We will utilize Postman when dealing with REST-based APIs:

http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.shrubbery.net/rancid/
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com
http://www.getpostman.com


Open and Proprietary Next Generation Networks

[ 46 ]

Git
Git is a protocol developed by Linus Torvalds in 2005 to have a better versioning system for
the Linux kernel. Git will be used throughout the book for interactive exercises.

Summary
In this chapter, we discussed many different concepts that tie NGN together. These
concepts will be discussed more in forthcoming chapters, so use this chapter as a reference
if you need an explanation of any terms. Some takeaways from the chapter are as follows.

The term NGN refers to the latest and near term networking equipment and designs. We
looked at networking concepts such as local, metro, and wide area networks, network
controllers, routers, and switches as well as routing protocols such as BGP, IS-IS, OSPF, and
RIP.

Now, what defines a modern network? There are many pieces, which are used either
singularly or together, that create a modern network—SDN using building blocks including
OpenFlow, Cisco ACI, and VMware NSX; next generation hardware and hyperscale
networking including open networking hardware from Accton, Quanta, and Facebook
along with software from Big Switch Networks, Cumulus, and Pica8; proprietary NGN
hardware and software from Cisco, Juniper and Arista along with internal use only
hardware from Google; open source software controllers such as OpenFlow controllers such
as Floodlight, ONOS, and OpenDaylight, along with closed source controllers such as Cisco
APIC and VMware NSX, NFV, traffic engineering using QoS, and OpenFlow; and network
design planning including the scoping of the current network/site. A list of tools we will use
in this book such as Git, Nagios, Postman, and RANCID.

In the next chapter, we will go deeper into networking hardware and software including,
the Open Compute Project and its goals for hyperscale networks.



2
Networking Hardware and

Software
Choosing the right networking hardware and software is key to the success of your project.
Many companies choose to mix open and closed (proprietary) vendors in their network or
use multiple proprietary or open vendors to avoid issues where the entire network can
collapse due to a problem with software/hardware from one vendor.

If you recall from Chapter 1, Open and Proprietary Next Generation Networks, originally,
routers were open as they were run on minicomputers. The first generation of switches or
hubs (bridges) had no real features, so there was no need for configuration.

These days, switches are much more flexible, able to hold hundreds of thousands of
forwarding entries, intelligent, and able to send traffic to the right ports rather than
broadcasting it out across the entire network.

Companies that used to build hardware that was rebranded and sold under the names of
Cisco, Juniper, HP, and others, are now building open hardware that is available directly to
the end user with proprietary free software that is available as open source. However,
companies such as Accton and Flextronics put their own branding on what we refer to as
white-box switches. Other companies such as Lanner provide open hardware white-box
solutions that anyone can rebrand.

In this chapter, we will cover the basics of open and closed networking hardware and
software. When you are done with this chapter, you should have a good grasp of the
following:

The Open Compute Project (OCP)
Hardware designs submitted to the OCP
Software administered by the OCP



Networking Hardware and Software

[ 48 ]

The Open Network Install Environment (ONIE)
Hardware from OCP member open vendors
Hardware from proprietary vendors

Introducing the OCP
As we discussed in Chapter 1, Open and Proprietary Next Generation Networks, in 2011,
Facebook started the OCP. They describe themselves as a collaborative community focused
on redesigning hardware technology to efficiently support the growing demands on
compute infrastructure. Essentially, entities contribute hardware designs for servers,
storage, computing, rack infrastructure, and networking.

Back in 2009, Facebook was expanding its network at a rapid pace and was looking for the
best way to standardize the building blocks for their network. Previously, companies such
as Yahoo, Google, and Hotmail had been building their compute and storage infrastructure
using generally available hardware from the consumer computer market. The goal of these
designs was to maximize rack space usage and they often contained computer
motherboards tied to rack shelves with their power supplies and hard drives attached
openly:

Google rack in 1998



Networking Hardware and Software

[ 49 ]

In the preceding image, you can see how tightly packed the boards were. Companies were
stuffing two or more servers in a single RU, essentially, 1.75". These racks required special
cooling infrastructure as they created a massive amount of heat. Over time, companies such
as Silicon Graphics International (SGI) Corp. (formerly Rackable Systems, Inc.) came out
with 1 RU servers that had close to the same computing power as the ones built by
hyperscalers.

When I was working for Exodus Communications, it was common for companies who had
hardware co-located in our facility to come in and replace parts and upgrade CPUs,
memory, and hard drives, and put the old hardware to rest. It was a very inefficient and
time-consuming way of dealing with hardware.

In 2011, when Facebook introduced the OCP to the world, they hosted a conference where
there were many different vendors showing their open hardware designs. At that time, the
OCP Networking subgroup did not exist, though some companies such as Intel and Quanta
presented their networking projects at the OCP Summit.

While Intel was still dabbling in the market, they produced the FM6000 network switch and
presented it at the 2013 OCP Summit. The Intel FM6000 reference switch was an OpenFlow-
capable 640 Gbps switch produced for the open networking community. As the time of
writing, Intel no longer produces full networking switches, but focuses on only parts.

When it was started, the OCP focused on servers and storage (hence the name). The first
networking switch announced was the Facebook Wedge, a 16x40G (Wedge 40). The Wedge
40 was a switch that Facebook was using in its network as a replacement for the vendor
(Cisco, Juniper) hardware. The first switch accepted was Accton/Edge-Core AS5712-54x.
Other vendors such as Quanta and Interface Masters submitted their designs and started
producing open networking switches.

Accepted open compute networking hardware
To be accepted to the OCP Networking Project, the hardware must meet certain
requirements including having full hardware diagrams, and a luggage tag (a plastic pull
out tab with information about the system), and go through a vetting process. As the time
of writing, the following switches have been accepted:

Company Model (if given) Port configuration Type of switch

Alpha Networks SNX-60x0-486F 48-port 10 GbE SFP+ and 6-port 40
GbE QSFP+

Leaf switch

Alpha Networks SNQ-60x0-320F 32-port 40 GbE QSFP+ Leaf/Spine switch



Networking Hardware and Software

[ 50 ]

Alpha Networks N/A 48x10GbT, 2x40 GbE QSFP+, 4x100
GbE QSFP28

Leaf switch

Alpha Networks N/A 32x100 GbE QSFP28 Leaf/Spine Switch

Edgecore Networks AS5712-54X 48-port 10 GbE SFP+ & 6-port
40GbE QSFP+

Leaf switch

Edgecore Networks AS6712-32X 32-port 40 GbE QSFP+ Leaf/Spine switch

Edgecore Networks AS7712-32X 32-port 100 GbE QSFP28 Leaf/Spine switch

Edgecore Networks ORSA-1RU Open Rack Switch Adapter N/A

Inventec DCS6072QS 48x10 GbE SFP+ and 6x40 GbE
QSFP+

Leaf switch

Inventec DCS7032Q28 32x100 GbE QSFP28 Leaf/Spine switch

Mellanox MSX1410OCP SwitchX-2 48x10 GbE SFP+ and
12x40 GbE QSFP+

Leaf switch

Mellanox MSX1710OCP SwitchX-2 36x40 GbE QSFP+ Leaf/Spine switch

Facebook Wedge 40 16x40 GbE QSFP+ Leaf/Spine switch

Facebook Wedge 100 32x100 GbE QSFP28 Spine switch

The following switches were pending:

Company Model (if given) Port Configuration Type of switch

Edgecore Networks AS7512-32x 32x100 GbE QSFP28 (Cavium
based)

Spine switch

Edgecore Networks OMP 256/512 256 and 512 port 100 GbE QSFP28 Spine switch

Edgecore Networks AS5900 54-port 10 GbE SFP+ and 6 port
100 GbE QSFP28

Leaf switch

Edgecore Networks AS4610 30 or 54 port 1 GbE with/without
POE

Access switch

Edgecore Networks ECW7212-L 2x2 indoor wireless access point Access point

Edgecore Networks ECW7220-L 3x3 indoor wireless access point Access point

Edgecore Networks ECWO7220-L 3x3 indoor wireless access point Access point

Agema AG6248C-POE 48-port 1 GbE, 2x10 GbE Access switch



Networking Hardware and Software

[ 51 ]

Facebook 6-pack 128x40 GbE QSFP+ Leaf/Spine switch

Facebook Backpack 128x100 GbE QSFP28 Spine switch

Nephos NPS4806 48x10 GbE and 6x40GbE Leaf switch

SKT CNA-SSX2RC N/A N/A

As of this writing, you can see that there are 15 accepted and 12 pending switches and
access points.

Open compute networking software projects
The OCP Networking Project also hosts a few software projects including ONIE, Open
Network Linux (ONL), SONiC, and SnapRoute.

Details of these software projects are:

ONIE is a Tiny Core Linux (TCL) installation that provides the ability for the end
user to manage the software installed on the switch. ONIE is a requirement to be
considered as an OCP switch.
ONL is a base NOS designed to run on network switches, based on Debian Linux.
SONiC is a full NOS based on Debian Linux and running Quagga as the routing
agent.
SnapRoute is a routing agent that runs on top of ONL and other Linux-based
NOS.

ONIE
As we discussed in Chapter 1, Open and Proprietary Next Generation Networks, ONIE is an
installable Linux image that works on switches and allows new operating systems to be
installed.



Networking Hardware and Software

[ 52 ]

ONIE offers a few options once booted including the following:

ONIE: Install OS
ONIE: Rescue
ONIE: Uninstall OS
ONIE: Update ONIE
ONIE: Embed ONIE

In install mode, ONIE will request images from an HTTP server in the same network. In
rescue mode, you can run the onie-nos-install command to install an image from a
web server or the onie-self-update command to upgrade ONIE. The main difference
between rescue mode and the other options is that rescue mode will not attempt to grab an
image from the network.

Consider this example of an ONIE upgrade via the rescue mode:

ONIE# onie-self-update http://local-http-server/onie-updater

Consider the example of ONIE NOS install via rescue mode:

ONIE# onie-nos-install http://local-http-server/NOS-installer



Networking Hardware and Software

[ 53 ]

If you choose ONIE: Uninstall OS, ONIE will erase the entire disk other than the ONIE
partitions and you will be left with ONIE only as a boot option. If you run ONIE: Embed
ONIE, it will install ONIE to the local drive of the system; this is how you install ONIE from
a USB or other external device.

ONL
ONL is a Linux distribution for bare-metal switches, that is, network forwarding devices
built from commodity components. ONL is based on the Debian Linux release with limited
tools installed and extra hardware support for switches.

ONL provides the base OS for many other projects from other open-source projects such as
SnapRoute and CoRD. ONL does not provide any forwarding agents except where it runs
FBOSS on the Facebook Wedge.

Broadcom-based switches running ONL can have an SDK, Open Network Switch Library
(OpenNSL), or Openflow Data Plane Abstraction (OF-DPA), both by Broadcom, which we
will discuss more in the next chapter, as their interface to the switching chip.

For any OCP submitted switches, ONL is a requirement. ONL currently runs on the Accton,
Agema, Dell-EMC, Interface Masters, Lanner, Mellanox, Quanta, and Qwave switches.

SONiC
SONiC is a full NOS released by Microsoft. SONiC is based on Debian 8 running Quagga
and is used in the Microsoft Azure network as part of the Azure Cloud Switch (ACS).

The design of SONiC is similar to the OpenSwitch project, where there is a central database
Redis, which talks to each of the daemons.

SONiC offers the following:

Border Gateway Protocol (BGP)
Equal-cost multi-path (ECMP)
Quality of Service (QoS)
Priority Flow Control (PFC) part of the IEEE 802.1Qbb specification
Weighted Random Early Discard (WRED)



Networking Hardware and Software

[ 54 ]

Class of Service (CoS)
Simple Network Management Protocol (SNMP)
Link Layer Discovery Protocol (LLDP), an open version of Cisco Discovery
Protocol (CDP)
Network Time Protocol (NTP)
Link Aggregation Group (LAG)

Those of you with networking backgrounds will know that there is no traditional Interior
Gateway Protocol (IGP) in the design such as Intermediate System to Intermediate
System (IS-IS) or Open Shortest Path First (OSPF). This is intentional as Microsoft uses
iBGP as its IGP. Using only BGP is a common design across campus networks.

IS-IS is a routing protocol designed to move information efficiently within
a computer network, a group of physically connected computers, or
similar devices. It accomplishes this by determining the best route for
datagrams through a packet-switched network.

SnapRoute
SnapRoute is an API-based forwarding engine written in GO.

SnapRoute provides the following protocols:

Address Resolution Protocol (ARP)
Bi-directional Forwarding Detection (BFD)
Border Gateway Protocol (BGP)
Dynamic Host Configuration Protocol Relay (DHCP Relay)
Dynamic Host Configuration Protocol (DHCP)
Open Shortest Path First (OSPF)



Networking Hardware and Software

[ 55 ]

Routing Information Base (RIB)
Tunneling protocols
Virtual Router Redundancy Protocol (VRRP)



Networking Hardware and Software

[ 56 ]

SnapRoute runs on top of ONL.

Consider this example REST API response from Postman, which we will cover in Chapter
5, Using Postman for REST API Calls:

Following is the output of {GET}
http://10.6.100.242:8080/public/v1/state/Ports call:

"Objects": [
  {
    "ObjectId": "ae0a7260-1850-4b79-4f9b-d77a8a5265a1",
    "Object": {
      "IntfRef": "fpPort6",
      "IfIndex": 0,
      "Name": "fpPort6",
      "OperState": "DOWN",
      "NumUpEvents": 0,
      "LastUpEventTime": "",
      "NumDownEvents": 0,
      "LastDownEventTime": "",
      "Pvid": 4095,



Networking Hardware and Software

[ 57 ]

      "IfInOctets": 0,
      "IfInUcastPkts": 0,
      "IfInDiscards": 0,
      "IfInErrors": 0,
      "IfInUnknownProtos": 0,
      "IfOutOctets": 0,
      "IfOutUcastPkts": 0,
      "IfOutDiscards": 0,
      "IfOutErrors": 0,
      "IfEtherUnderSizePktCnt": 0,
      "IfEtherOverSizePktCnt": 0,
      "IfEtherFragments": 0,
      "IfEtherCRCAlignError": 0,
      "IfEtherJabber": 0,
      "IfEtherPkts": 0,
      "IfEtherMCPkts": 0,
      "IfEtherBcastPkts": 0,
      "IfEtherPkts64OrLessOctets": 0,
      "IfEtherPkts65To127Octets": 0,
      "IfEtherPkts128To255Octets": 0,
      "IfEtherPkts256To511Octets": 0,
      "IfEtherPkts512To1023Octets": 0,
      "IfEtherPkts1024To1518Octets": 0,
      "ErrDisableReason": "",
      "PresentInHW": "YES",
      "ConfigMode": "Unconfigured",
      "PRBSRxErrCnt": 0
    }
  }
]

Here we can see that there is a port, Front Panel Port 6 (fpPort6), that is down and has not
passed any traffic.

Network hardware designs from the OCP
Accton/Edgecore has released a large number of systems to the OCP including Facebook
Wedges. In addition to the AS7712-32x, a 32x100 G switch based on the Broadcom
Tomahawk chip, we will look at the Faceboook Wedge 100, a similar switch to the
AS7712-32x, but adds a BMC and more LED colors.

Other vendors such as Quanta, Interface Masters, and Mellanox have also released open
designs to the OCP.



Networking Hardware and Software

[ 58 ]

Accton AS7712-32X
Accton/Edgecore AS7712-32x is a 32-port 100 GbE switch using QSFP28+ ports. The name
translates as 7712 = model, 32 = number of ports, and x = fiber. A copper 1 GbE switch
would be designated with a T, that is, 1 GbT (also known as IEEE 802.3ab) instead of an X.

The AS7712-32x uses a Broadcom Tomahawk switching chip providing 3.2 Terabits per
second (Tbps). The AS7712-32x provides support for up to 32 × 100 GbE, 64 × 40/50 GbE, or
even 128 × 25 GbE ports with an aggregate switching bandwidth of 3.2 Tbps.

The Tomahawk chip supports OpenFlow 1.3+ via OF-DPA and can handle up to 128,000
routes and 72,000 hosts.

Edge-Core AS7712-32X

Facebook/Accton Wedge 100
The Facebook Wedge 100 is built by Accton for Facebook. It is also available directly from
Accton.

The Wedge has the following characteristics:

The Wedge has a Baseboard Management Controller (BMC) that manages the
fans, power, and other necessities to keep the switch running
The Wedge has an Intel Bay Trail E3845 processor on its own board in the switch
The Wedge has a Broadcom Tomahawk switch chip connected to 32 QSFP28s



Networking Hardware and Software

[ 59 ]

In total, the Wedge 100 has three different boards inside, two of which are field-
replaceable

Facebook Wedge 100

Facebook's 6-pack and Backpack
Along with their 1 U fixed port switches, Facebook also uses two multi-slot chassis
systems—the 6-pack, based on the Wedge 40, and the Backpack, based on the Wedge 100.
The 6-pack is based on the Wedge 40 design and uses what consists of two Wedge 40s per
physical line card and four line cards per chassis for 128 40 Gb ports. The fabric also has two
Wedge 40s per physical card and there are two fabric cards for a total of 12 Wedge 40s in a
6-pack. Since there are only 6 physical cards, it is called the 6-pack.

The Backpack has the same design, but with the Wedge 100 boards and 100 Gb ports. Refer
to the Facebook's Backpack image for a physical picture.

Hardware from Cisco and Dell
Both Cisco and Dell produce high-end switches for their customers. Both can utilize off-the-
shelf forwarding chips such as Trident II and Tomahawk from Broadcom. Cisco also
designs its own forwarding chips. In the case of the Nexus line of switches, the Nexus 3000
series uses commodity Broadcom forwarding chips, while the Nexus 9000 series uses
specialty chips designed by Cisco that have been designed around having the functionality
to handle ACI features. This is an important difference.

Cisco's APIC is able to interact with ACI switches to provide network wide control.



Networking Hardware and Software

[ 60 ]

Cisco Nexus 3232C
The Cisco Nexus 3000 is a fixed port switch like the ones from Accton, which can provide 48
ports of 10 GbE or 32 ports of 100 GbE, depending on the model.

The Cisco Nexus 3232C has 32x100 GbE and looks quite similar to the Wedge 100 and
Accton AS7712-32x. Since the Nexus 3232C is based on the Broadcom Tomahawk
forwarding chip, it can handle up to 128,000 routes and 72,000 hosts.

Some of the important features are as follows:

It provides layer 2 and 3 switching of up to 6.4 Tbps and more than 2,300 Million
packets per second (Mpps)
PHY-less design on all ports to optimize latency
32 fixed 100 GbE QSFP 28 ports
It supports 10G/25G/40G/50G/100G in a single ToR platform
It supports mobility and tenant isolation with VXLAN

Cisco Nexus 3232C

Cisco Nexus 3172
The Cisco Nexus 3172 has 48 10 GbE ports with 6 40 GbE uplink. It is based on the
Broadcom Trident II+ forwarding chip. Some of the important features are as follows:

It provides layer 2 and 3 switching of up to 1.4 Tbps and more than 950 Mpps
It supports mobility and tenant isolation with VXLAN (with a software upgrade)
It optimizes latency with PHY-less design on all ports
It supports 1/10/40 Gbps for maximum physical layer flexibility
It offers up to 72 1/10 Gigabit Ethernet (GE) ports, or 48 1/10 GE plus six 40 GE
ports in 1 RU



Networking Hardware and Software

[ 61 ]

The 40 GbE ports can be configured as 4x10, making a total of 72 ports.

Cisco Nexus 3172

Cisco Nexus 9000
The Cisco Nexus 9504 is a 4-slot switch from Cisco that offers ACI functionality. It can hold
up to 128 100 GbE ports and offers 15 Tbps of switching capacity. The Cisco Nexus 9504
switch offers 4 slots for networking cards, which are available in many different
configurations including these:

32 x 100 GbE (QSFP28)
36 x 40 GbE (QSFP+)
48 x 1/10/25 GbE + 4 x 100 GbE

The Cisco Nexus 9504 runs NX-OS and can operate in either standalone mode or with ACI.
It can also be configured using a REST/JSON interface.

The software licenses available for the Nexus 9000 series routers are as follows:

Layer 2 only
Layer 2 and Layer 3
Span/Tap
Cisco Data Center Network Management (DCNM)



Networking Hardware and Software

[ 62 ]

One interesting thing about Cisco's NX-OS is that it contains a Linux boot loader and can be
managed via the standard Linux GRUB system.

Cisco Nexus 9504

Another interesting thing is that the Cisco Nexus 9504 switch and Facebook's Backpack look
very similar. At this point, there is a lot of convergence in the space.



Networking Hardware and Software

[ 63 ]

Facebook's Backpack

Dell Z9100-ON
In the networking space, Dell is an outlier as it produces both proprietary and open
networking hardware.

Like the Dell S4048, the Dell Z9100 is available as an open networking switch—the Z9100-
ON. It provides 32 ports of 100 GbE like the Edge-Core 7712 and the Cisco Nexus 3232C. It
is an SDN-ready fixed form factor switch and is purpose-built for applications in high-
performance data centers and modern computing environments.



Networking Hardware and Software

[ 64 ]

The Z9100 runs Cumulus Linux as well as ONL and Dell OS9.

Dell Z9100

Dell Z9500
The Dell Z9500 is a 3 RU 132 QSFP (40 GbE) port switch that can handle up to 528 10 GbE
interfaces using breakout cables. It is not an open networking switch and runs Dells OS9. It
offers many of the same features as Cisco including full Layer 2 and Layer 3 support along
with a programmable API.

Dell Z9500 has 10.5 Tbps of forwarding bandwidth and is able to forward all ports in a non-
blocking fashion.

Dell Z9500



Networking Hardware and Software

[ 65 ]

Summary
In this chapter, we discussed the multitude of open and closed hardware and software
systems available to network architects. Many of these systems are very similar to each
other. This is due to the fact that the industry is converging on designs based on the same
hardware including forwarding chips from Broadcom, Cavium, and others.

The main decision from the design side is whether there will be open networking
equipment in the design. You can build a NGN from completely proprietary equipment, so
the inclusion of open networking equipment is optional, but in our mind it is a good idea.

We discussed the OCP, its goals, and members including Juniper Networks and now Cisco,
who are both mostly in the proprietary networking space.

In the next chapter, we will explore OpenFlow and its use in networking.



3
Exploring OpenFlow

OpenFlow was created based on a better way to design and manage networks independent
of different vendor equipment. Though OpenFlow seems to have appeared out of nowhere,
OpenFlow is just one of the ways that we have historically tried to make computer
networks more programmable using SDN.

In this chapter, we trace the history of programmable networks based on OpenFlow, how
they work, and what the current state is. When done, you should have a good grasp of the
following:

Concepts around active networking and programmable networks
The history of OpenFlow
The different versions of OpenFlow and what is the importance of each
Understanding OF-DPA, the open source OpenFlow agent from Broadcom
Using an OpenFlow agent such as Indigo
Open networking hardware from OCP networking vendors
How controllers interact with OpenFlow agents

In Chapter 1, Open and Proprietary Next Generation Networks, we talked about the control
plane and the data plane. The control plane is where the forwarding information is gathered
and processed to create specific information for the data plane to use to forward packets.

Active and programmable network concepts
The generally accepted definition of an active network is one that modifies its behavior
based on the packets crossing the devices. Active networks generally contain parts such as
Network Processor Units (NPUs) or Field Programmable Gate Arrays (FPGAs) rather than
Application-Specific Integrated Circuit (ASIC).



Exploring OpenFlow

[ 67 ]

While newer ASICs have some programmable capacity, they are still less malleable than
FPGAs.

An NPU is a computer processor optimized for handling network data. As we discussed
earlier, all of the initial routing devices on the internet did software forwarding, using a
general-purpose Computer Processing Unit (CPU) which limited the throughput and
speed of these devices. The NPU, similar to the CPU, will have a programmable path, or
pipeline that can be modified in real-time to process network data. Network-specific ASICs,
NPUs, and FPGAs brought forwarding to the hardware level.

An FPGA, as the name says, is a re-programmable application specific processor. An FPGA
will have a programmable data plane, or pipeline that can be modified in real-time to
process network data.

NPUs and FPGAs are what allowed SDN and OpenFlow to be brought into real-world
networks. Having these chips in networking hardware allowed classic vendors to expand
the features available to their customers. These chips also allowed for experimentation in
the hardware data plane, previously only available in a software data plane.

The history of OpenFlow
The birth of OpenFlow is generally attributed to a program that came from within the
Stanford computer science department entitled Clean Slate, referring to the concept of
wiping a board to remove all of the current information and starting over. The limitations of
the hardware/software at that time pushed the need for a new solution. Within this
program, OpenFlow was born.

OpenFlow essentially replaces the complex control plane of a switch/router with an agent
that listens to a central controller. The central controller does all of the heavy lifting to
determine the best path(s) for packets to take and gives the agent a list of how the packets
should be handled. The OpenFlow agent then interprets and translates the forwarding
information for the hardware it is running on. An OpenFlow agent does not make any
decisions locally, only translates the information from the OpenFlow controller for the local
environment.

Before the emergence of OpenFlow, SDN was caught between the vision of fully
programmable active networks and hardware/software that would enable deployment in
live networks. OpenFlow struck a balance between these two goals by enabling more
functions than earlier route controllers and building on existing commodity switch
hardware due to the increasing use of merchant-silicon chipsets in commodity switches.



Exploring OpenFlow

[ 68 ]

Because OpenFlow relied on the limited functionality of existing switches, OpenFlow was
limited in features but immediately deployable, allowing the SDN movement to get a
foothold in the network architecture space.

An overview of OpenFlow
A current OpenFlow switch has a table of rules to manage packets, where the rule matches
on data in the packet header. The rule applies a list of actions, which are listed as follows:

Drop the packet
Flood the packet out of multiple interfaces
Forward out of a specific interface
Modify the packet header
Push (punt) the packet to the controller

The rule increments a set of counters that track the number of bytes and packets that were
processed by the rule. Lastly, the rule contains a priority, to allow the system to match the
correct rule in case of a multiple match. When a packet is received that matches multiple
rules, it is matched to the highest priority rule. With the introduction of multiple tables, the
action of sending to another table was introduced. OpenFlow offered a few major values
that helped push SDN forward; here are some notable ones:

Programmable functions in the network to lower the barrier to innovation

SDN introduced the concept of programmable networks as a way to lower the
barrier to network innovation. The view that it is difficult to innovate in a
production network and requests for increased programmability are commonly
cited in the initial motivation for SDN. At the time, routers and switches were
limited by the NOS that was provided with them. The NOS could not be modified
to add/change features. At first, SDN was focused on programming the control
plane, whereas the need was for data plane programmability. Work was being
done in the data plane at the same time. Data plane programmability is important
to emerging technologies such as Network Function Virtualization (NFV).



Exploring OpenFlow

[ 69 ]

Network virtualization, and the ability to demultiplex to software programs
based on packet headers

Network virtualization was developed to support investigation into multiple
programming models. The key components of an NFV platform are a base OS that
manages shared resources; a set of containers, each of which defines a virtual
machine for packet operations; and a set of network functions that work within a
given container to provide an end-to-end service. Directing packets to a particular
container depends on pattern matching on header fields and redirecting to the
appropriate container.

A unified architecture for central controller orchestration

Although the vision was partially realized in active networking research, early
designs stated the need for unifying the wide range of middlebox functions with a
common, central framework. Although this vision may not have directly
influenced the more recent work on NFV, various lessons from active networking
research may prove useful as the application of SDN-based control and
orchestration of middleboxes continues.

Though SDN showed the vision of active networks, the technologies did not see
widespread deployment. Many factors affect the adoption of new technology. The lack of a
killer application and the amount of work required to put OpenFlow to use in the network
were two of the major ones. The community proffered various applications that could
benefit from in-network processing, including information fusion, caching and content
distribution, network management, and application-specific quality of service.
Unfortunately, although performance benefits could be quantified in the lab, none of these
application areas demonstrated a sufficiently compelling solution to a pressing need.

How OpenFlow works
OpenFlow uses a centralized controller that sends messages to one or more switches telling
them how to handle packets. The controller may be getting information from multiple
applications and sending it to the OpenFlow agent on the switch. The OpenFlow agent on
the switch will interpret the commands and create API calls to configure the ASIC through
the Software Development Kit (SDK). The SDK is the interface between the software and
the hardware on the switch:



Exploring OpenFlow

[ 70 ]

OpenFlow controller and switch

The growth of OpenFlow
The paradigm change driven by OpenFlow was the adoption of SDN in the industry
compared to preceding concepts. OpenFlow appeared at the same time as merchant silicon
vendors were opening up access to their software and hardware, including the following:

Broadcom's open APIs, which allowed for open control of forwarding behaviors
of their chipsets
White-box switches, utilizing the Broadcom chipsets and reference designs to
create their own less expensive hardware

OpenFlow started at version 0.8.9 and has moved to version 1.5. The first released version
was 1.0 on December 31, 2009. All current OpenFlow capable switches support 1.0; many
support OpenFlow 1.3. We will discuss versions 1.0 to 1.5, the current release.



Exploring OpenFlow

[ 71 ]

OpenFlow 1.0
The first production version of OpenFlow, version 1.0, had a reasonable set of features,
including the following:

Multiple queues per port:
Allowed for minimum bandwidth guarantees (QoS)

Flow cookies:
Flow cookies, like HTML cookies, allow for better tracking of flows

Match on IP fields in ARP packets:
Allows for better control of packets

Match on IP ToS/DSCP:
Being able to see the ToS/DSCP bit of packets allows the system to
assign priority to traffic based on what originator of the traffic
requested

While a good beginning, OpenFlow 1.0 was limited by a design constraint:

Because the hardware used in initial OpenFlow designs was not designed with OpenFlow
in mind, the hardware was limited in how it could handle OpenFlow messages.

For example, switches running OpenFlow 1.0 cannot perform more than one action during
the packet handling process. For every different flow, there needed to be a rule, for
example, one per interface + MAC. Essentially, this means that if you have 6 interfaces and
100 MACs, you need 600 entries. Many OpenFlow capable switches only support a few
thousand entries.

If you attempt to apply an Access Control List (ACL) to a port, the rules must be
regenerated to contain the port, MAC, and ACL rule. So, if you add 10 ACLs, then you
would need 600 * 10 or 6,000 entries. This problem scales very high:



Exploring OpenFlow

[ 72 ]

This problem is solved with multiple tables. We will discuss this more in the OpenFlow 1.1
write-up, where tables are introduced.

OpenFlow 1.1
OpenFlow 1.1 added a few features that really helped push adoption, including multiple
tables, groups, packet actions, and packet action sets:

Multiple tables:
The biggest addition was the concept of tables. With tables, you
could chain operations together, so instead of having a entry for
every port + MAC + ACL, you could have one for each port, one for
each MAC, and one for each ACL, then chain them together as
needed.
Tables were able to manage the traffic path took through the switch
using GOTO actions.
Packet actions could be combined into packet action sets.
Packet action sets are executed at the end of the pipeline while
packet actions could be configured between tables.



Exploring OpenFlow

[ 73 ]

Groups:
Group tables with four types of groups:

ALL: This is used for multicast/broadcast
Select: This is used for multi-path
Indirect: This is used for simple failover
Fast failover: This allows for traffic to be easily sent
out any active link if the primary link is down

MPLS and VLANs:
Adding, modifying, and removing MPLS packet headers
Support for VLANs and QinQ (VLANs within VLANs)

VLANs are used by almost every corporate network

Virtual ports:
Expand port number from a 16-bit to 32-bit to allow for more than
65,535 ports

Multiple tables allowed for the concept of pipelining to be brought to OpenFlow. Pipelining
is generally used to explain the path a packet takes through a switch or routers forwarding
chip. Pipelines are programmable and can be reprogrammed based on what packet the
pipeline is processing. Pipelining is built by combining tables and packet actions/packet
action sets.

With the addition of multiple tables in OpenFlow, every packet first goes through Table 0,
which in turn makes the first decision on how to forward the packet:



Exploring OpenFlow

[ 74 ]

A packet coming into the system can be routed through multiple tables. In this case, Table 0
determines that Packet 1 needs to be sent to Table 10. Now, Table 10 decides to send the
packet to Table 20 and Table 20 sends the packet out Port 3. For Packet 2, it is sent directly
to Table 30, which sends the packet out Port 4.

By default, the VLAN of 1 is used to represent none or default.

OpenFlow 1.2
OpenFlow 1.2 added some important features for advanced networks, such as IPv6 support,
multiple controllers (active/failover), and extensible packets. The following is the list of
some important features added in the OpenFlow 1.2 switch:

IPv6 support
Controller failover



Exploring OpenFlow

[ 75 ]

Extensible fields allow for metadata to be added to packets without setting a
specific space for them in the packet design. OpenFlow 1.2 supports these
extensible fields:

Match
Packet rewriting
Packet-in
Error messages

Extensible fields are a good way to deal with unknown amounts of metadata. In a
standard IP packet, there would be parts carved out for specific data; with the
extensible design, extra data could be attached to a packet as needed.

OpenFlow 1.3
OpenFlow 1.3 added a significant amount of features that it has become the standard
version supported on most hardware, expanded on extensible fields, and provided a more
flexible framework to express capabilities. Capabilities are a list of supported features
announced by a OpenFlow capable device when the OpenFlow session is started. The
capabilities are matched and the set with the least amount is used.

The main change is the clarity of the negotiation of table capabilities. Instead of being part
of the table statistics structure, the capabilities have been moved to their own structure and
have been encoded using the TLV format, which is more flexible. All of this allows for more
tables, including next-table, table-miss flow entries, and experimenter.

The statistics framework (stats) has been renamed into the multiple part (multipart)
framework as it is used for both statistics and capabilities. Description of ports has been
moved into another new message that allows for a greater number of ports, along with
moving the tables structure into its own multipart message.

The importance of this re-factor is the ability to now announce capabilities on their own
within the handshake between two OpenFlow devices.

OpenFlow 1.4
OpenFlow 1.4 brought a few new key changes that are useful for companies that are
looking for more redundancy and stability in their OpenFlow networks.



Exploring OpenFlow

[ 76 ]

These are listed here:

Decision hierarchy: This is a new bundle feature that adds transactional
capabilities to rule set changes. This lets controllers group a set of actions and
then either commit or rollback the entire group of actions in a single operation.
Eviction/vacancy events: In earlier versions of the specification, if a flow table
was full, new flows would not be inserted and an error would be sent to the
controller. This version adds a vacancy feature that sends an early warning to the
controller, in advance, to avoid filling up the table. The eviction feature removes
entries of lower importance to free up space for new entries.
Multiple controllers: This can monitor and control the same switch with
notification to controller when group or meters are modified and when
master/slave roles have changed.

OpenFlow 1.5
OpenFlow 1.5 added the ability to have inbound and outbound flow tables:



Exploring OpenFlow

[ 77 ]

It also added flow monitoring, message bundling, and enhancements to eviction
(introduced in version 1.4). Message bundling allows the controller to send multiple
messages as one so that there is better synchronicity between OpenFlow switches.

Understanding OF-DPA – the open source
OpenFlow agent from Broadcom
Broadcom's OpenFlow Data Plane Abstraction (OF-DPA) is an application software
component that implements an adaptation layer between OpenFlow and the Broadcom
Silicon SDK. OF-DPA enables scalable implementation of OpenFlow 1.3 on Broadcom
switch devices.

OF-DPA was originally released to assist the networking community in building OpenFlow
agents. The Broadcom SDK for switches is a licensed closed product while OF-DPA exposes
APIs that can be utilized by OpenFlow agents:



Exploring OpenFlow

[ 78 ]

Some of the example API calls available are as follows:

ofdpaBcmCommand: This executes a Broadcom command on the device and
reports whether it was successful or failed (1 or 0)
ofdpaFlowAdd: This adds a flow to the switching table
ofdpaFlowDelete: This deletes a flow from the switching table
ofdpaFlowModify: This modifies an existing flow table entry
ofdpaDropStatusAdd: This drops an entry from the switching table
ofdpaDropStatusActionGet: This checks the status of any requested drops
ofdpaDropStatusDelete: This confirms that the delete has happened
ofdpaFlowByCookieGet: This uses a OpenFlow cookie (introduced in version
1.0) to get data about a flow
ofdpaFlowByCookieDelete: This deletes a flow from the table using its cookie

OF-DPA can be integrated with Indigo and other OpenFlow agents, which we will talk
about next.

Using an OpenFlow agent such as Indigo
Indigo is provided with OF-DPA and is simple to run as it is a daemon that contacts and
exchanges messages with an OpenFlow controller. The job of the OpenFlow agent is to take
the information given by the OpenFlow controller and translate it for the local hardware. In
the case of Indigo with OF-DPA, OF-DPA is providing the abstraction and Indigo is
communicating with it based on the data received from the OpenFlow controller.

To see how simple Indigo is, you can run it from the command line and see the options:

Usage:

ofagent [OPTION...]: This runs the main OFAgent application.

Options:

-a, –agentdebuglvl=AGENTDEBUGLVL: The verbosity of OFAgent debug
messages
-l, –listen=IP:PORT Listen
-t, –controller=IP:PORT Controller
-?, –help: Gives the help list



Exploring OpenFlow

[ 79 ]

–usage: Gives a short usage message
-V, –version: Prints program version

The options are debug level, IP and port listening, controller IP and port, help, usage and
version. That is all there is. Since Indigo is only translating information sent between the
OpenFlow controller and the data plane, it does not need much, if any, extra configuration
data.

OpenFlow capable OCP devices
Broadcom was the first chip vendor to embrace OpenFlow and release their OF-DPA
package for their switching chips. Many of the Accton switches are based on forwarding
chips from Broadcom and support OF-DPA.

Accton/Edgecore Broadcom based switches that are compatible with OpenFlow/OF-DPA
are as follows:

AS4600-54T (PowerPC)
AS5710-54X (PowerPC)
AS5712-54X (AMD64)
AS5812-54X (AMD64)
AS5812-54T (AMD64)
AS6712-32X (AMD64)
AS6812-32X (AMD64)
AS7712-32X (AMD64)
AS7716-32X (AMD64)

How controllers interact with OpenFlow agents
The general concept of controller and agent interaction is the following.

An OpenFlow controller is provided with information via many sources, including APIs,
routing protocols, and information from the agent about the local devices connected to it.
The OpenFlow controller then takes this information, aggregates it, and sends a generalized
version of the information to the OpenFlow agents. The OpenFlow agent then translates the
information for the local device it is running on and programs the forwarding table.

At the time of writing, there were a few major open source players in the OpenFlow
controller space. The main thought-leading controllers were OpenDaylight and ONOS.



Exploring OpenFlow

[ 80 ]

OpenDaylight
OpenDaylight was founded in part by Cisco and other large networking companies to
provide a solution that was compatible with their products as to allow the consumer to
continue to evaluate vendor products along with their open networking counterparts. Over
time, OpenDaylight has been embraced by companies such as Brocade, which sells a
commercial version of OpenDaylight called the Brocade SDN Controller.

Brocade SDN Controller
Formerly known as the Brocade Vyatta Controller, the Brocade SDN Controller is based on
OpenDaylight and has a few extra features such as support for the 5600 series vRouters:

Brocade SDN Controller – simple topology

In the preceding screenshot, you can see that there are two OpenFlow switches (273 and
274) to which two hosts are connected to each for a total of four.



Exploring OpenFlow

[ 81 ]

The following is a diagram of the setup used to produce the Brocade SDN Controller
screenshots:

Testing setup for Brocade SDN Controller

In the preceding diagram, we have a PC running multiple VMs, four plain Linux VMs for
connecting to the switches, and one VM for the Brocade Controller.



Exploring OpenFlow

[ 82 ]

In the middle, there are two switches which are connected to the hosts, an IXIA tester, and a
management switch for sending OpenFlow control messages:

Brocade SDN Controller – flow view

In the preceding diagram, you can see flows from switch 273 and 274 that connect the hosts.



Exploring OpenFlow

[ 83 ]

Cisco Open SDN Controller
Cisco also produces a commercial version of OpenDaylight called the Cisco Open SDN
Controller, which includes extra tools such as the Cisco OpenFlow Manager, Cisco
Inventory Manager, and other Cisco-specific tools.

ONOS
ONOS was conceived and produced by ON.Lab with support from AT&T and NTT. ONOS
later became a project of the Linux Foundation (LF) where it lives today. ONOS is meant to
operate as a cluster, which is different than OpenDaylight which was designed to be run as
a single system:

ONOS controller

The ONOS controller differs from OpenDaylight in how it handles clustering multiple
controllers. In the preceding figure, you can see that there are 300 devices, spread across
two controllers, 150 each.



Exploring OpenFlow

[ 84 ]

Summary
In this chapter, we talked about programmable networks, more specifically, how OpenFlow
works, the different OpenFlow controllers available, and the hardware that can use
OpenFlow.

OpenFlow was conceived at Stanford in their Clean Slate lab as a way to overcome the
limitations of current networking and allow for programmable (SDN) networks. The
OpenFlow standards original release version was 0.8.9 and has moved to 1.5 at this time.

OpenFlow version 1.0 was functional but only utilized one table, partly due to the
limitations of the hardware at the time. In OpenFlow 1.1 multiple tables were introduced,
helping to push OpenFlow further into mainstream networking. Today most vendors are
standardized on OpenFlow version 1.3, a few support 1.4 but are backwards compatible.

In the next chapter, we will discuss REST and Thrift-based APIs.



4
Using REST and Thrift APIs to

Manage Switches
In Chapter 1, Open and Proprietary Next Generation Networks, we talked about both Facebook
(FBOSS) and SnapRoute routing/switching applications, both managed by Application
Program Interfaces (APIs). FBOSS uses Apache Thrift directly, while SnapRoute uses a
RESTful interface and Apache Thrift internally.

The use of APIs provides you with easier management and automation of network devices.
The concept is similar to OpenFlow in that you can use a central server to manage multiple
devices instead of working on them one by one via a Command-line Interface (CLI) or a
web interface.

Apache Thrift was originally developed by Facebook and became open source in 2007.
Thrift has been under the stewardship of the Apache Foundation since 2008 and became an
Apache Foundation Top Level Project in 2010. Thrift provides an abstraction interface to the
user that can talk to multiple different languages in the background.

REST was created between 1996-1999 and introduced in 2000 as the basis for HTTP 1.1
Universal Resource Identifiers (URIs).

REST is an API that provides a consistent user experience across different systems by
utilizing standardized operations, such as:

GET: This is the command sent via a web/REST client when it is asking for a web
page, web object, or RESTful data
PUT: This is the command sent via a web/REST client when it is attempting to
push data up to the web server
PATCH: This is the command sent via a web/REST client when it is attempting to
change data that already exists in the system



Using REST and Thrift APIs to Manage Switches

[ 86 ]

Prior to APIs, the only way to program networking devices remotely was to use Simple
Network Management Protocol (SNMP) to read and write values or to screen
scrape/automate the CLI. SNMPv1 was introduced in 1988 and designed around the
precommercial internet. SNMPv2 came out in 1991 and introduced a level of security to
SNMP.

In this chapter, we will discuss REST-based, Thrift-based, and general APIs, which are used
to manage networking devices. When done, you should have a good grasp of the following:

APIs and their use in networking
Representational State Transfer (REST), that is, RESTful APIs:

How to use RESTful APIs in Postman to manage SnapRoute
Apache Thrift clients and servers:

Networking tools from Facebook that utilize Thrift
How to manage Facebook's FBOSS software via Thrift

API concepts
APIs themselves predate modern networks and computing but only became useful in
networking around the year 2000 when REST was introduced. Since REST has been around
longer than Thrift, we will discuss it first.

REST
REST, like other networking APIs, is available both on the local system and remotely. REST
is designed to be:

Scalable: RESTful applications must be scalable by utilizing some or all of the
following concepts:

Simplifying components: A simple component will scale better
than a complex one; complex components should be broken down
into multiple simpler ones
Decentralization: This could be done by distributing processing
across multiple components
Frequency of operations: The more the interactions that happen
between the client and server, the more it impacts the performance
of the application



Using REST and Thrift APIs to Manage Switches

[ 87 ]

High performance: There are a few different ways in which performance can be
measured:

Network performance: The application must be adaptable to the
style and size of the data it is carrying to not overburden the
application
Perceived performance: The application must minimize latency by
deciding whether to compress data on the fly, create latency on the
server side, or stream all of the data that may cause latency on the
client side

Modifiable/evolvable: The application must be evolvable, extensible,
customizable, configurable, and reusable
Portable: The application must be portable and return both the information and
the structure
Visible: The application must be visible to other applications
Reliable: The application must return data in the format expected as designed
within the constraints of the REST design
Simple: By design, all REST implementations must use a uniform interface.

REST has six guiding constraints, all of which must be met for an application to be RESTful:

Client-server: The needs of the user application are separate from the server
application. The server and client may store data as they see fit but must transmit
data in the requested format.
Stateless: The application must be stateless as the server should not retain any
client data from previous interactions with the same client.
Cacheable: The data must define whether it is cacheable or not and the amount of
time it can be cached.
Layerable: You must be able to feed the application making the request from the
server directly or any intermediary nodes that may have cached the required
information without needing to be told so.
Code-on-demand: The server can optionally provide code, such as compiled
JavaScript or other programs, to be utilized by the client to extend the
functionality of the client.
Uniform interface: Once a developer becomes familiar with one of your APIs,
they should be able to follow a similar approach for other APIs.



Using REST and Thrift APIs to Manage Switches

[ 88 ]

A uniform interface, as described by REST, must do the following:

Identification of resources: When sending data, the data must be portable and
sent in the manner the client requests, if available
Manipulation of data by client: The client must have enough information to be
able to modify or delete data
Self-descriptive: Each message must contain the information necessary to
process the message, for example, which parser (JSON/XML/so on) to utilize
Hypermedia as the engine of the application state: A REST client after making a
request to a URI should be able to utilize links provided by the server to discover
the necessary information to fulfill its request

REST utilizes standard operations, such as:

PUT: Sends data to be programmed to the REST agent, replacing or modifying the
current data
GET: Requests either a list of URIs or specific data necessary from an agent
POST: Creates a new entry in the dataset or within a dataset
DELETE: Deletes an entry in the dataset or within a dataset

In this book, we will focus on the SnapRoute RESTful API.

Apache Thrift
Apache Thrift (or Facebook Thrift as some refer to it) aims to provide scalable services
across different programming languages. Thrift combines a generation engine for code with
a software stack to create services that work effectively and efficiently between multiple
programming languages, including:

C++: A high-level programming language that is feature-full and object-oriented
Python: A high-level general-purpose programming language
Java: A multi-architecture programming language that allows you to run the
same program on multiple different types of computers
Ruby: An object-oriented language patterned after Perl and LISP
JavaScript: A remotely interpreted programming language mostly utilized by
web servers and websites



Using REST and Thrift APIs to Manage Switches

[ 89 ]

The goal of Thrift was to create a simple interface that could work with any programming
language; to this end, the following goals are defined:

Simple: The code should be simple, readable, and free of unnecessary
dependencies
Consistent: Language-specific code is kept in extensions, not included in the core
Transparent: It should utilize as many commonalities between programming
languages as possible
High performance: Performance is more important than beauty; the code should
be functional but not always beautiful

In comparison to REST, Thrift has an Interface Definition Language (IDL), which is
programming-language-independent and is publish-subscribe instead of client-server. The
publish-subscribe method is the concept where the client subscribes to the server to get the
data. The client may only receive some of the data published based on filtering. Neither the
client nor the server knows who each other are; it just knows the type of data to expect.

In this book, we will focus on Thrift and how it interfaces with the Facebook Open Switch
System (FBOSS).

SnapRoute – a RESTful API programmable
routing stack
SnapRoute is a newly formed company focused on providing an easily automated and
functional routing platform. It was built by a group of engineers who had worked on
Apple's network. Here we will dive into how an API programmable routing stack works.

As it uses a RESTful API, the commands sent to the switch are done using either POST, GET,
OPTIONS, PATCH, or DELETE.

SnapRoute refers to ports on a switch as fpPortX, where X is the number of the front panel
(fp) ports. If the port can be broken out (for example, 10 Gx4 for 40 G or 25 Gx4 for 100 G),
then there will be a delineator fpPortXsY, where the port number is X and the breakout is
referred to as Y. So fpPort1s1 would be the front panel port 1, which is the breakout link 1.



Using REST and Thrift APIs to Manage Switches

[ 90 ]

The following diagram shows the general software layout of a switch running SnapRoute's
FlexSwitch. We have not included the operating system or any other programs or drivers
necessary for the device to operate:

In order to send the output of commands to SnapRoute's FlexSwitch, use a Python module
that formats JSON for better readability. If you don't use something to parse the data, the
data will be somewhat readable but hard to understand. For example, if you want to see all
the interfaces on the box, send this command:

curl -X GET --header 'Content-Type: application/json' --header 'Accept:
application/json' 'http://localhost:8080/public/v1/config/Ports'

Without a parser, you will see something similar to the following output, which is very
hard to decipher:

{"ObjectId":"6ec727d1-c2c8-44dc-77fd-
d9b1fd6dce4c","Object":{"IntfRef":"fpPort1","IfIndex":145,"Name":"fpPort1",
"OperState":"DOWN","NumUpEvents":0,"LastUpEventTime":"","NumDownEvents":0}}

If we run the command again, using the Python-based json.tool parser, we get:

curl -X GET --header 'Content-Type: application/json' --header 'Accept:
application/json' 'http://localhost:8080/public/v1/config/Ports' | python -
m json.tool

{
 "CurrentMarker": 0,
 "MoreExist": false,
 "NextMarker": 0,



Using REST and Thrift APIs to Manage Switches

[ 91 ]

 "ObjCount": 160,
 "Objects": [
 {
 "Object": {
 "AdminState": "DOWN",
 "Autoneg": "OFF",
 "BreakOutMode": "1x100",
 "Description": "",
 "Duplex": "Full Duplex",
 "EnableFEC": false,
 "IfIndex": 145,
 "IntfRef": "fpPort1",
 "LoopbackMode": "",
 "MacAddr": "00:90:fb:55:e5:11",
 "MediaType": "Media Type",
 "Mtu": 9412,
 "PRBSPolynomial": "",
 "PRBSRxEnable": false,
 "PRBSTxEnable": false,
 "PhyIntfType": "KR4",
 "Speed": 100000
 },
 "ObjectId": "6ec727d1-c2c8-44dc-77fd-d9b1fd6dce4c"
 },
 {
 "Object": {
 "AdminState": "DOWN",
 "Autoneg": "OFF",
 "BreakOutMode": "1x100",
 "Description": "",
 "Duplex": "Full Duplex",
 "EnableFEC": false,
 "IfIndex": 140,
 "IntfRef": "fpPort2",
 "LoopbackMode": "",
 "MacAddr": "00:90:fb:55:e5:11",
 "MediaType": "Media Type",
 "Mtu": 9412,
 "PRBSPolynomial": "",
 "PRBSRxEnable": false,
 "PRBSTxEnable": false,
 "PhyIntfType": "KR4",
 "Speed": 100000
 },
 "ObjectId": "8029f48f-5b1b-492f-73b7-dc879e386508"
 },

The preceding information is much clearer.



Using REST and Thrift APIs to Manage Switches

[ 92 ]

Taking it further, to get information about a specific port, say fpPort1, send:

curl -X GET --header 'Content-Type: application/json' --header 'Accept:
application/json' -d '{"IntfRef":"fpPort1"}'
'http://localhost:8080/public/v1/config/Port' | python -m json.tool

{
 "Object": {
 "AdminState": "DOWN",
 "Autoneg": "OFF",
 "BreakOutMode": "1x100",
 ... duplicate content omitted (see above output)
 "Speed": 100000
 },
 "ObjectId": "6ec727d1-c2c8-44dc-77fd-d9b1fd6dce4c"
}

Some of the pieces of information you receive are as follows:

The port speed is 100 Gbps
The port breakout mode is 1x100 Gbps (that is, it is not broken out)

In the preceding code, note that we are including the filter:

{"IntfRef":"fpPort1"}

This says we are referring to the interface with the name fpPort1 or front panel port 1.

To enable fpPort1, send:

curl -X PATCH --header 'Content-Type: application/json' --header 'Accept:
application/json' -d '{"IntfRef":"fpPort1","AdminState":"UP"}'
'http://localhost:8080/public/v1/config/Port' | python -m json.tool

{
 "Access-Control-Allow-Headers": "Origin, X-Requested-With, Content-Type,
 Accept",
 "Access-Control-Allow-Methods": "POST, GET, OPTIONS, PATCH, DELETE",
 "Access-Control-Allow-Origin": "*",
 "Access-Control-Max_age": "86400",
 "ObjectId": "6ec727d1-c2c8-44dc-77fd-d9b1fd6dce4c",
 "Result": "Success"
}

Refer to the following code:

{"IntfRef":"fpPort1","AdminState":"UP"}



Using REST and Thrift APIs to Manage Switches

[ 93 ]

This is the main piece of information; we are asking the system to turn front panel port 1
up.

This tells us that the call was successful:

"Result": "Success"

Now we can query the port again and see that it is now "AdminState": "UP":

curl -X GET --header 'Content-Type: application/json' --header 'Accept:
application/json' -d '{"IntfRef":"fpPort1"}'
'http://localhost:8080/public/v1/config/Port' | python -m json.tool

{
 "Object": {
 "AdminState": "UP",
 "Autoneg": "OFF",
 "BreakOutMode": "1x100",
 "Description": "",
 "Duplex": "Full Duplex",
 "EnableFEC": false,
 "IfIndex": 145,
 "IntfRef": "fpPort1",
 "LoopbackMode": "",
 "MacAddr": "00:90:fb:55:e5:11",
 "MediaType": "Media Type",
 "Mtu": 9412,
 "PRBSPolynomial": "",
 "PRBSRxEnable": false,
 "PRBSTxEnable": false,
 "PhyIntfType": "KR4",
 "Speed": 100000
 },
 "ObjectId": "6ec727d1-c2c8-44dc-77fd-d9b1fd6dce4c"
}

To configure the speed of the port, you use the same command but substitute Speed with
extra data:

Before:

curl -X GET "http://10.7.1.78:8080/public/v1/config/Port?IntfRef=fpPort2" |
python -m json.tool

 "Object": {
 "AdminState": "DOWN",
 "Autoneg": "OFF",
 "BreakOutMode": "1x100",



Using REST and Thrift APIs to Manage Switches

[ 94 ]

 "Description": "",
 "Duplex": "Full Duplex",
 "EnableFEC": false,
 "IfIndex": 140,
 "IntfRef": "fpPort2",
 "LoopbackMode": "",
 "MacAddr": "00:90:fb:55:e5:11",
 "MediaType": "Media Type",
 "Mtu": 9412,
 "PRBSPolynomial": "",
 "PRBSRxEnable": false,
 "PRBSTxEnable": false,
 "PhyIntfType": "KR4",
 "Speed": 100000
 },
 "ObjectId": "8029f48f-5b1b-492f-73b7-dc879e386508"
}

In the preceding code, you can see that the speed is 100 Gbps or 100 GbE. Now refer to the
following code:

curl -X PATCH --header 'Content-Type: application/json' --header 'Accept:
application/json' -d '{"IntfRef":"fpPort2","Speed":40000}'
'http://localhost:8080/public/v1/config/Port'| python -m json.tool

 "Access-Control-Allow-Headers": "Origin, X-Requested-With, Content-Type,
 Accept",
 "Access-Control-Allow-Methods": "POST, GET, OPTIONS, PATCH, DELETE",
 "Access-Control-Allow-Origin": "*",
 "Access-Control-Max_age": "86400",
 "ObjectId": "8029f48f-5b1b-492f-73b7-dc879e386508",
 "Result": "Success"
}

Here, we sent a command to change the speed to 40 Gbps or 40 GbE.

One thing to note is that integers do not have quotes ("") around them in the RESTful
command, whereas strings do:

{"IntfRef":"fpPort2","Speed":40000}

To confirm the change, query the interface again:

curl -X GET "http://localhost:8080/public/v1/config/Port?IntfRef=fpPort2" |
python -m json.tool

 "Object": {
 "AdminState": "DOWN",



Using REST and Thrift APIs to Manage Switches

[ 95 ]

 "Autoneg": "OFF",
 "BreakOutMode": "1x100",
 "Description": "",
 "Duplex": "Full Duplex",
 "EnableFEC": false,
 "IfIndex": 140,
 "IntfRef": "fpPort2",
 "LoopbackMode": "",
 "MacAddr": "00:90:fb:55:e5:11",
 "MediaType": "Media Type",
 "Mtu": 9412,
 "PRBSPolynomial": "",
 "PRBSRxEnable": false,
 "PRBSTxEnable": false,
 "PhyIntfType": "KR4",
 "Speed": 40000
 },
 "ObjectId": "8029f48f-5b1b-492f-73b7-dc879e386508"
}

In the Postman API development program, which we will discuss in depth in Chapter 5,
Using Postman for REST API Calls, we can send the same commands via a graphical
interface, which will return the same data as we saw via curl. For example, we send the
following:

{GET} http://snaproute.router.ip:8080/public/v1/config/Ports

We see the same output as we do with the curl command.



Using REST and Thrift APIs to Manage Switches

[ 96 ]

Configuring an interface
Using curl, you can easily configure an IP address on fpPort1:

curl -X POST --header 'Content-Type: application/json' --header 'Accept:
application/json' -d '{"IntfRef":"fpPort1","IpAddr":"100.10.100.1/24"}'
'http://localhost:8080/public/v1/config/IPv4Intf'

{
 "Access-Control-Allow-Headers": "Origin, X-Requested-With, Content-Type,
  Accept",
 "Access-Control-Allow-Methods": "POST, GET, OPTIONS, PATCH, DELETE",
 "Access-Control-Allow-Origin": "*",
 "Access-Control-Max_age": "86400",
 "ObjectId": "a5856728-ab49-47b4-4ad4-de6a5e5a1ed3",
 "Result":"Success"
}

To confirm that the interface was properly set up, you can confirm its functionality via
ping:

# ping 100.10.100.2
PING 100.10.100.2 (100.10.100.2) 56(84) bytes of data.
64 bytes from 100.10.100.2: icmp_seq=1 ttl=64 time=0.432 ms
64 bytes from 100.10.100.2: icmp_seq=2 ttl=64 time=0.338 ms

You can also look at the ARP table:

curl -X GET --header 'Content-Type: application/json'
'http://localhost:8080/public/v1/state/ArpEntrys' | python -m json.tool
{
 "CurrentMarker": 0,
 "MoreExist": false,
 "NextMarker": 0,
 "ObjCount": 1,
 "Objects": [
 {
 "Object": {
 "ExpiryTimeLeft": "8m23.814811246s",
 "Intf": "fpPort1",
 "IpAddr": "100.10.100.2",
 "MacAddr": "00:90:fb:59:3e:b7",
 "Vlan": "Internal Vlan"
 },
 "ObjectId": ""
 }
 ]
}



Using REST and Thrift APIs to Manage Switches

[ 97 ]

Thrift
FBOSS is a Thrift API controlled forwarding agent from Facebook. In March of 2015,
Facebook announced their first hardware switch, called the Wedge, and the network agent
that ran on it, called FBOSS. On bringing up, FBOSS is configured statically. A Thrift-based
API is used to add/modify/delete routes:

Overview of FBOSS software stack

In the preceding diagram, you can see that an FBOSS switch is very similar to a FlexSwitch-
enabled one and the one based on OpenFlow. In general, all switch network operating
systems will have the same flow:

A configuration interface
A forwarding stack
SDK integration

FBOSS includes a Python script called fboss_route.py, which is used to configure the
FBOSS agent directly. Our examples will use this:

fboss_route.py
usage: fboss_route.py [-h] [--port PORT] [--client CLIENT] [--host HOST]
{flush,add,delete,list_intf,list_routes,list_optics,list_ports,list_vlans,l
ist_arps,list_ndps,enable_port,disable_port}
 ...
fboss_route.py: error: too few arguments



Using REST and Thrift APIs to Manage Switches

[ 98 ]

Here is the help information from the fboss_route.py script; you can see that you have
options to:

Add/delete/flush route entries
List interfaces
List routes
List optics
List ports
List VLANs
List ARPs
List NDPs
Enable and disable ports

If we run the list_vlans command, we get the following:

# fboss_route.py list_vlans
===== Vlan 1000 ====
169.254.0.10
2001:00db:1111:1150:0000:0000:0000:000a
===== Vlan 1001 ====
172.31.1.1
===== Vlan 1002 ====
172.31.2.1
===== Vlan 1003 ====
172.31.3.1
===== Vlan 1004 ====
172.31.4.1
===== Vlan 1005 ====
172.31.5.1
===== Vlan 1006 ====
172.31.6.1
===== Vlan 3001 ====
10.11.0.111
2001:00db:3333:0e01:1000:0000:0000:00aa
===== Vlan 3002 ====
10.11.8.111
2001:00db:3334:0e01:1000:0000:0000:00aa
===== Vlan 3003 ====
10.11.16.111
2001:00db:3335:0e01:1000:0000:0000:00aa
===== Vlan 3004 ====
10.11.24.111
2001:00db:3336:0e01:1000:0000:0000:00aa



Using REST and Thrift APIs to Manage Switches

[ 99 ]

Running the list interface commands gives similar data, showing the L3 interface (VLAN)
with the IP address you see in the preceding code:

# fboss_route.py list_intf
L3 Interface 1000: 169.254.0.10/16, 2001:db:1111:1150::a/64
(2e:60:0c:59:ab:4e)
L3 Interface 1001: 172.31.1.1/24 (2e:60:0c:59:ab:4e)
L3 Interface 1002: 172.31.2.1/24 (2e:60:0c:59:ab:4e)
L3 Interface 1003: 172.31.3.1/24 (2e:60:0c:59:ab:4e)
L3 Interface 1004: 172.31.4.1/24 (2e:60:0c:59:ab:4e)
L3 Interface 1005: 172.31.5.1/24 (2e:60:0c:59:ab:4e)
L3 Interface 1006: 172.31.6.1/24 (2e:60:0c:59:ab:4e)
L3 Interface 3001: 10.11.0.111/31, 2001:db:3333:e01:1000::aa/127
(2e:60:0c:59:ab:4e)
L3 Interface 3002: 10.11.8.111/31, 2001:db:3334:e01:1000::aa/127
(2e:60:0c:59:ab:4e)
L3 Interface 3003: 10.11.16.111/31, 2001:db:3335:e01:1000::aa/127
(2e:60:0c:59:ab:4e)
L3 Interface 3004: 10.11.24.111/31, 2001:db:3336:e01:1000::aa/127
(2e:60:0c:59:ab:4e)

If we list the ports, we can manipulate them:

# fboss_route.py list_ports
Port 1: [enabled=True, up=False, present=False]
Port 2: [enabled=True, up=False, present=False]
Port 3: [enabled=True, up=False, present=False]
Port 4: [enabled=True, up=False, present=False]
Port 5: [enabled=True, up=False, present=False]

To disable a port, simply send:

# fboss_route.py disable_port 1
Port 1 disabled

The system says port 1 is disabled; let's check:

# fboss_route.py list_ports
Port 1: [enabled=False, up=False, present=False]
Port 2: [enabled=True, up=False, present=False]
Port 3: [enabled=True, up=False, present=False]
Port 4: [enabled=True, up=False, present=False]
Port 5: [enabled=True, up=False, present=False]



Using REST and Thrift APIs to Manage Switches

[ 100 ]

If we want to add a route, we can do so using this:

# fboss_route.py list_routes
Route 10.11.0.110/31 --> 10.11.0.111
Route 10.11.8.110/31 --> 10.11.8.111
Route 10.11.16.110/31 --> 10.11.16.111
Route 10.11.24.110/31 --> 10.11.24.111
Route 169.254.0.0/16 --> 169.254.0.10
# fboss_route.py add 10.12.13.0/24 10.11.0.111
# fboss_route.py list_routes
Route 10.11.0.110/31 --> 10.11.0.111
Route 10.11.8.110/31 --> 10.11.8.111
Route 10.11.16.110/31 --> 10.11.16.111
Route 10.11.24.110/31 --> 10.11.24.111
Route 10.12.13.0/24 --> 10.11.0.111
Route 169.254.0.0/16 --> 169.254.0.10

To remove the route, do the same with delete instead of add:

# fboss_route.py delete 10.12.13.0/24
# fboss_route.py list_routes
Route 10.11.0.110/31 --> 10.11.0.111
Route 10.11.8.110/31 --> 10.11.8.111
Route 10.11.16.110/31 --> 10.11.16.111
Route 10.11.24.110/31 --> 10.11.24.111
Route 169.254.0.0/16 --> 169.254.0.10

You can also use the fboss_route.py script remotely by sending a host command:

# fboss_route.py --host 10.6.100.231 add 10.12.13.0/24 10.11.0.1



Using REST and Thrift APIs to Manage Switches

[ 101 ]

Summary
In this chapter, we talked about API-driven routing/switching applications. This concept
allows you to have easier automation and management. Instead of programming systems
box by box, you are now able to use a central server or application to manage multiple
systems.

The main difference between Thrift and REST is that Thrift was designed to work as a
frontend to multiple languages, such as Python, C, and C++. REST is a standard (RESTful)
that allows companies to provide a well-defined HTML interface to programs.

For example, we used Facebook's FBOSS and SnapRoute's FlexSwitch.

FBOSS provides a Thrift interface that can be used for automation and is accessible via a
Thrift server running on the Wedge and Wedge 100 switches. It provides both static and
programmed configuration.

FlexSwitch is a RESTful API-driven routing protocol that gets all of its programming from
the REST interface.

In the next chapter, we will talk about Postman, a tool for developing and testing APIs. We
will demonstrate Postman working with FlexSwitch.



5
Using Postman for REST API

calls
In this chapter, we will cover the Postman application, which we have touched on lightly in
earlier chapters. When you are done with this chapter, you will have a good grasp of the
following topics:

What Postman is
Installing Postman
Using Postman
Postman and SnapRoute

In Chapter 4, Using REST and Thrift APIs to Manage Switches, we talked about the
SnapRoute routing application and its use of APIs. While exploring APIs, it is good to have
tools other than just curl to gather data.

For example, the Postman tool, available at h t t p s ://w w w . g e t p o s t m a n . c o m , is available as
both a standalone application and as a plugin for most major browsers.

Postman advertises itself as a tool for building and testing APIs, and on this page, h t t p s

://w w w . g e t p o s t m a n . c o m /d o c s /i n s t a l l _ n a t i v e , they state the following:

With Postman, you can construct requests quickly, save them for later use and analyze the
responses sent by the API. Postman can dramatically cut down the time required to test
and develop APIs. Postman adapts itself for individual developers, small teams or big
organizations equally well.

https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native
https://www.getpostman.com/docs/install_native


Using Postman for REST API calls

[ 103 ]

For our work with Postman, the notation we will use is the following:

{GET} represents the GET pulldown choice in the Postman
GUI.
{PATCH} represents the PATCH pulldown choice in the
Postman GUI.

To explain how Postman works, we will recreate the commands we used in the previous
chapter to configure the SnapRoute FlexSwitch software.

Showing and modifying the configuration of
SnapRoute's FlexSwitch via Postman
In the previous chapter, we sent the following hard-to-read and complex command via
curl:

curl -X GET --header 'Content-Type: application/json' --header 'Accept:
application/json' 'http://localhost:8080/public/v1/config/Ports' | python -
m json.tool

 {
   "CurrentMarker": 0,
   "MoreExist": false,
   "NextMarker": 0,
   "ObjCount": 160,
   "Objects": [
    {
      "Object": {
      "AdminState": "DOWN",
      "Autoneg": "OFF",
      "BreakOutMode": "1x100",
      "Description": "",
      "Duplex": "Full Duplex",
      "EnableFEC": false,
      "IfIndex": 145,
      "IntfRef": "fpPort1",
      "LoopbackMode": "",
      "MacAddr": "00:90:fb:55:e5:11",
      "MediaType": "Media Type",
      "Mtu": 9412,
      "PRBSPolynomial": "",
      "PRBSRxEnable": false,



Using Postman for REST API calls

[ 104 ]

      "PRBSTxEnable": false,
      "PhyIntfType": "KR4",
      "Speed": 100000
    },
   "ObjectId": "6ec727d1-c2c8-44dc-77fd-d9b1fd6dce4c"
   },
   {
    "Object":
    {
      "AdminState": "DOWN",
      "Autoneg": "OFF",
      "BreakOutMode": "1x100",
      "Description": "",
      "Duplex": "Full Duplex",
      "EnableFEC": false,
      "IfIndex": 140,
      "IntfRef": "fpPort2",
      "LoopbackMode": "",
      "MacAddr": "00:90:fb:55:e5:11",
      "MediaType": "Media Type",
      "Mtu": 9412,
      "PRBSPolynomial": "",
      "PRBSRxEnable": false,
      "PRBSTxEnable": false,
      "PhyIntfType": "KR4",
      "Speed": 100000
    },
  "ObjectId": "8029f48f-5b1b-492f-73b7-dc879e386508"
  },



Using Postman for REST API calls

[ 105 ]

This command is replicated using the following call in Postman:

{GET} http://snaproute.router.ip:8080/public/v1/config/Ports

Using Postman to configure SnapRoute interfaces

If you want to query a specific port, such as front panel port 1 (fpPort1), you can add it to
the command line:

{GET} http://snaproute.router.ip:8080/public/v1/state/Port/?IntfRef=fpPort1



Using Postman for REST API calls

[ 106 ]

The sequence of operations is as follows:

Choose GET from the Postman query pulldown.1.
Add http://snaproute/public/v1/state/Port, where snaproute is the IP2.
or DNS name of your SnapRoute-powered switch and public/v1/state/Port
is the common name for querying ports. Note the term state in the query.
Add the port you want to look at using ?IntfRef=fpPortX, where X is the port3.
you are looking for:

Querying the SnapRoute interface state using Postman



Using Postman for REST API calls

[ 107 ]

If we want to turn port fpPort1 up, we follow these steps:

We send a PATCH REST command:1.

      {PATCH} http://snaproute.router.ip:8080/public/v1/config/Port

Here again we will use the Postman query pulldown and this time choose2.
PATCH, which means to add/change information on the system.
We then put the generic public/v1/config/Port (note that we use config3.
instead of state):



Using Postman for REST API calls

[ 108 ]

Here, the Body is set to raw with {"IntRef":"fpPort1","AdminState":"UP"} in the
data section. Using raw data in RESTful calls is acceptable, but not preferred. As SnapRoute
is a new company, these commands may change over time as they work with customers:

Turning interface fpPort1 up

If we want to query the IPv4 configuration for all of the interfaces, you can send the
following GET command:

{GET} http://snaproute.router.ip:8080/public/v1/config/IPv4Intfs



Using Postman for REST API calls

[ 109 ]

To look at the ARP table, follow these steps:

We must first select the GET option and run the command:1.

      {GET} http://snaproute.router.ip:8080/public/v1/state/ArpEntrys

In this command, we will again use the GET selection in the Postman query2.
pulldown.
We will put in the IP/DNS name for the snaproute box and the3.
public/v1/state/ArpEntrys (note that we are back to using state, since we
are querying information):

You will notice that the syntax is the similar when using curl or Postman.

One of the limitations of the SnapRoute API is its inability to take patch commands directly.
For example, the RESTful call for turning an interface admin up should be this: {PATCH}
http://snaproute.router.ip:8080/public/v1/config/Port/?IntfRef=fpPort1&

AdminState:UP, rather than using the raw information in the body.



Using Postman for REST API calls

[ 110 ]

Summary
In this chapter, you learned how to install Postman, use it to configure, and get the
configuration from a switch running SnapRoute's FlexSwitch software. You also learned
how to program FlexSwitch using some of the extra features of Postman.

In the next chapter, we will be doing a deep dive into the OpenFlow protocol.



6
OpenFlow Deep Dive

In Chapter 3, Exploring OpenFlow,we covered how OpenFlow works and gave some general
information about it. Here, we will cover OpenFlow in depth in a practical way, focusing
mostly on usage. After reading this chapter, you will have a general knowledge of these:

How and why OpenFlow was invented
What issues OpenFlow solves
How OpenFlow works internally
How an OpenFlow agent and controller work together
How to install and configure OpenDaylight (ODL) and ONOS

History of OpenFlow
As covered in Chapter 3, Exploring OpenFlow, OpenFlow came out of the need for a simple
and straightforward way to program network devices such as switches. OpenFlow began at
Stanford University and came to life as version 1.0. The key members of the Clean Slate
program continue to contribute to the open networking space. Here is a small sample of the
people involved and their current contributions.

Guru Parulkar, executive director of the Stanford Clean Slate program is now the executive
director of the Open Networking Foundation (ONF) and the Open Networking Lab
(ON.Lab), which recently merged. Guru started the Open Networking Summit (ONS), a
yearly conference, focusing on open hardware and software. He is also heavily involved in
ONOS, an OpenFlow controller and Central Office Re-Designed (CORD) .



OpenFlow Deep Dive

[ 112 ]

Nick McKeown, currently the executive director of Barefoot Networks, a company that is
building fully programmable, open network chips. Nick co-founded Nicira, a company
purchased by VMware, which created NSX, which we will cover in this book.

Before OpenFlow
Prior to OpenFlow, in order to program a forwarding chip or ASIC on open hardware, you
needed the skills necessary to use the Software Development Kit (SDK) provided by the
company who produced the ASIC. The agreement necessary to get access to the SDK was
and still is onerous. Many researchers, developers, and end users have trouble acquiring
access rights to SDKs. Some developers especially, those dealing with open source software,
are completely against the concept of being under NDA and contract.

All of this meant that developers and users had no access to program their switches in the
way they wanted or needed. Some clever folks utilized the Joint Test Action Group (JTAG)
standards along with readers/programmers to determine some of the inner workings of the
systems. Once you knew how the system operated, you were able to modify registers,
memories, and so on to possibly get the system to behave in the way you wanted.

As open hardware became more visible, a few companies were formed including Pica8,
Cumulus Networks, Big Switch Networks, and others that focused on open hardware. Pica8
released PicOS, building on top of the SDK and providing OpenFlow capabilities.

After OpenFlow
The introduction of hardware that supported OpenFlow was a big turning point for open
networking. End users were now able to develop and use applications that talked to an
open API interface (that is, the commands that had to be sent to the switch were public).

OpenFlow used the fact that most switches used flow tables to process packets. Many
features of these flow tables were similar across different vendors and created the initial
OpenFlow specification. An OpenFlow-capable switch needed to have three properties:

A flow table implementation
A secure channel to connect to the OpenFlow controller
An implementation of the OpenFlow protocol

OpenFlow also provided a guideline for a dedicated OpenFlow switch, which only speaks
OpenFlow and simply forwards traffic between ports based on the information it gets from
the controller.



OpenFlow Deep Dive

[ 113 ]

While OpenFlow was developed in 2009, OpenFlow hardware and software did not become
mainstream for a few years and open source implementations of forwarding chip drivers
did not appear until 2014.

In 2012, I worked with SiliconANGLE to produce a report called The State of OpenFlow 2012
available at h t t p ://w w w . s l i d e s h a r e . n e t /s i l i c o n a n g l e /r a - 01151301f i n a l v 3. In the
report, we worked with multiple vendors who supported OpenFlow, including HP,
IWNetworks, and Pica8. The goal of the report was to test whether OpenFlow was ready for
the real world. At that time, 1,000 flow entries were considered a reasonable number, today
it is much too low.

Some other interesting takeaways from the report are the fact that HP had its own
proprietary additions to OpenFlow and that Pica8 was supporting OpenFlow in hybrid
mode, which allowed OpenFlow to be enabled on a port-by-port basis.

The report came out before ODL and ONOS were realized in 2013 and 2014, respectively.
So, all of the work was done using Floodlight as the SDN controller.

OpenFlow solved most of these issues. For example, with Broadcom forwarding chips
supported by OpenFlow Data Plane Abstraction (OF-DPA), the system API calls used by
OpenFlow are public. In contrast, the ones in the SDK are under NDA and cannot be
publicly disclosed. Broadcom has been relatively responsive about releasing Open API
binaries that allow for the programming of their hardware. After releasing OF-DPA, they
subsequently released Open Network Switch Library (OpenNSL). When we discuss
OpenFlow in reference to Broadcom chips, we will focus on OF-DPA.

OF-DPA
OF-DPA was introduced in early 2014 at the Open Networking Summit (ONS). OF-DPA
v1.0 supported OpenFlow version 1.3.1, which as discussed earlier provides multiple tables 
and other features needed to move OpenFlow forward.

OF-DPA is considered an Open API project, which publicly releases the header files for OF-
DPA and a list of API calls that can be made. In comparison, the Broadcom SDK is
completely hidden and all API calls are provided under NDA and cannot be exposed.

https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3
https://www.slideshare.net/siliconangle/ra-01151301finalv3


OpenFlow Deep Dive

[ 114 ]

PicaOS
PicaOS is a NOS from Pica8 that supports both L2 switching and L3 routing. PicaOS uses
XORP, a lightly active open source routing platform that is similar to Free Range Routing
(FRRouting) (the Quagga/Zebra fork). Pica8 was spun out of Quanta computers, who had
released the LB9, a switch that was used by many research organizations and universities.
Furthermore, PicaOS also supports OpenFlow in both a full and a hybrid setting.

Open Network Linux
Open Network Linux (ONL) is a platform OS for open networking switches. It provides the
necessary functionality to manage fans, power, SFPs, and other important low-level
hardware. ONL is available with the Open Route Cache(ORC) daemon to provide network
forwarding support to the system. ONL with ORC daemon can be used with routing
protocol suites such as Bird and FRR. ONL can be used with forwarding agents such as
FBOSS and SnapRoute.

What issues does OpenFlow solve?
One of the main benefits of OpenFlow is the ability to control devices from a central
OpenFlow controller. Products such as Floodlight, ODL, and ONOS provide the frontend to
the switches, allowing end users to program the switch(es). The central controller allows
network admins to solve problems in new ways, such as SD-WAN, which can use
OpenFlow as the mechanism to exchange network information between multiple sites.

Google learned from their B4 WAN project how valuable OpenFlow controllers could be.
The B4 project carried inter-datacenter traffic, which grew as new products and features
were added to Google's portfolio. Google was able to roll out new features via the
controllers rather than the switching hardware, which lessened the frequency of updates to
their switching hardware.

On a generic switch/router, either a static configuration or routing protocols control how
traffic is forwarded. For example, on a Cisco switch running IOS, you would need to
configure the port as shown here:

Switch# configure terminal
Enter configuration commands, one per line.  End with CNTL/Z.
Switch(config)# interface FastEthernet0/0
Switch(config-if)# ip address 10.10.2.1 255.255.255.0
Switch(config-if)# no shutdown



OpenFlow Deep Dive

[ 115 ]

To allow for packet forwarding to other devices, you would need to configure static routing
for their addresses. To do so, you must run the following command:

Switch(config)# ip route 10.0.0.1 255.255.255.255 FastEthernet0/0

This will add a route for 10.0.0.1/32 out interface FastEthernet0/0.

To reproduce the forwarding in OpenFlow, you must run the following command:

curl -X POST -d '{"nw_dst": "10.0.0.1/32", "actions":"output=2"}'
http://localhost:8080/wm/staticentrypusher/json

Internal workings of OpenFlow
The OpenFlow protocol is divided into four components:

Configuration (language and utility)
State machine
Message layer
System interface

Configuration
Configuration is divided into two parts, the configuration language and the configuration
utility. The configuration language is designed with a straightforward interface to configure
OpenFlow switches and OpenFlow controllers. The structure of the language is based on
the types of information the switch or controller can handle.

For example, the configuration language for an OpenFlow 1.3 switch will contain type
definitions for the supported internet protocols, IPv4 and IPv6. Type definitions can be
combined to create stages. Examples of stages are initialization, authentication, and
authorization.

State machine
The state machine defines the lower level behavior of the protocol such as capabilities, flow
control, and negotiation. Capabilities are a list of features that the OpenFlow switch
supports such as packet reassembly, setting, or reading the Type of Service (ToS) of
packets (packet handling priorities).



OpenFlow Deep Dive

[ 116 ]

Message layer
The message layer is the central component in OpenFlow, providing message handling and
manipulation services. An example of a message is the Hello message, used during session
setup to negotiate OpenFlow versions.

System interface
The system interface is what talks to the outside world. It contains the necessary keys,
interfaces, and transport channels. An example of a system interface is the switch agent
interface, which interacts with the switch to forward packets to and from the OpenFlow
controller and the switch system kernel:

How an OpenFlow controller and agent work
together
Without an OpenFlow controller, an OpenFlow-capable switch has no intelligence when it
comes to forwarding traffic. Whether the controller runs locally on the switch, or on a server
in the network, the controller is central to how OpenFlow works. Here, we will look at two
simple examples: Floodlight and Indigo.



OpenFlow Deep Dive

[ 117 ]

Floodlight
Floodlight is an open source OpenFlow controller that was initially released by Big Switch
in 2011. It is a Java-based OpenFlow controller based on the Beacon OpenFlow controller
written by David Erikson originally at Stanford and then further enhanced while he was
working for Big Switch Networks.

Floodlight utilizes a RESTful API, which can be controlled via curl, Postman, or any other
REST compliant tool.

Indigo
Indigo is an open source OpenFlow agent that runs on open networking switches. Indigo is
the basis for Big Switch Networks, Switch Light, which is a combination of ONL and a
commercial version of Indigo. Indigo is included with OF-DPA and hence is easy to get
installed; if you have an OF-DPA for the system you are working on, you have Indigo.

Connecting Indigo and Floodlight together
For this exercise, we will use the Indigo Virtual Switch (IVS), which is a software-based
high-performance OpenFlow switch that utilizes Open vSwitch (OVS). If you do not have
access to a Linux machine to do the work, follow these directions to create a virtual machine
under VirtualBox:

To install IVS, you can pull it down from Git:

Open Terminal on a Linux box and run the following command:1.

git clone --recurse-submodules
https://github.com/floodlight/ivs.git

This will download Indigo Virtual Switch and all of its necessary parts. From
there, you can enter the ivs directory and run make to build the switch. You
should see something like this:

$ git clone --recurse-submodules
https://github.com/floodlight/ivs.git
Cloning into 'ivs'...
remote: Counting objects: 6881, done.
remote: Compressing objects: 100% (2/2), done.
remote: Total 6881 (delta 1), reused 1 (delta 1), pack-reused 6878
Receiving objects: 100% (6881/6881), 1.55 MiB | 2.89 MiB/s, done.
Resolving deltas: 100% (4241/4241), done.



OpenFlow Deep Dive

[ 118 ]

Checking connectivity... done.
Submodule 'submodules/bigcode'
(git://github.com/floodlight/bigcode.git) registered for path
'submodules/bigcode'
Submodule 'submodules/indigo'
(git://github.com/floodlight/indigo.git) registered for path
'submodules/indigo'
Submodule 'submodules/infra'
(git://github.com/floodlight/infra.git) registered for path
'submodules/infra'
Submodule 'submodules/loxigen-artifacts'
(git://github.com/floodlight/loxigen-artifacts.git) registered for
path 'submodules/loxigen-artifacts'
Submodule 'submodules/luajit-2.0'
(git://github.com/floodlight/luajit-2.0.git) registered for path
'submodules/luajit-2.0'
Cloning into 'submodules/bigcode'...
remote: Counting objects: 3262, done.
remote: Total 3262 (delta 0), reused 0 (delta 0), pack-reused 3262
Receiving objects: 100% (3262/3262), 939.43 KiB | 296.00 KiB/s,
done.
Resolving deltas: 100% (1991/1991), done.
Checking connectivity... done.
Submodule path 'submodules/bigcode': checked out
'6d63049bc7a46facad4b9706c21fcae633cf5cac'
...
Cloning into 'submodules/luajit-2.0'...
remote: Counting objects: 12035, done.
remote: Compressing objects: 100% (2229/2229), done.
remote: Total 12035 (delta 9823), reused 12002 (delta 9801), pack-
reused 0
Receiving objects: 100% (12035/12035), 3.51 MiB | 2.29 MiB/s, done.
Resolving deltas: 100% (9823/9823), done.
Checking connectivity... done.
Submodule path 'submodules/luajit-2.0': checked out
'c2924c3e1d17ffe469a654233481d7be1248d7e0'

You can see that there are a lot of software repositories downloaded for IVS
including loxigen and other necessary infrastructure. Now we will build the
software.



OpenFlow Deep Dive

[ 119 ]

If you see any submodule failures, you can do the following:2.

cd ivs
git submodule update --init
snoble@build$ cd ivs
snoble@build:~/ivs$ ls
build docker INTERNALS.md Makefile oftests README.md submodules
tests
debian init.mk LICENSE modules openvswitch rhel targets
snoble@build:~/ivs$ make
make -C targets/ivs
make[1]: Entering directory '/home/snoble/ivs/targets/ivs'
 Compiling[ release ]: IVSMain::cli.c
 Compiling[ release ]: IVSMain::main.c
 Creating Library: build/gcc-local/lib/IVSMain.a
....
make -C targets/ivs
make[1]: Entering directory '/home/snoble/ivs/targets/ivs'
make[2]: Entering directory
'/home/snoble/ivs/submodules/luajit-2.0/src'
make[2]: 'libluajit.a' is up to date.
make[2]: Leaving directory
'/home/snoble/ivs/submodules/luajit-2.0/src'
 Linking[release]: IVS::ivs
make[1]: Leaving directory '/home/snoble/ivs/targets/ivs'
make -C targets/ivs-ctl
make[1]: Entering directory '/home/snoble/ivs/targets/ivs-ctl'
 Compiling[ release ]: IVSCtlMain::main.c
 Creating Library: build/gcc-local/lib/IVSCtlMain.a
 Linking[release]: IVSCtl::ivs-ctl
make[1]: Leaving directory '/home/snoble/ivs/targets/ivs-ctl'
snoble@build:~/ivs$

Once it is done building, you will find the binaries here:3.

targets/ivs/build/gcc-local/bin/ivs
targets/ivs-ctl/build/gcc-local/bin/ivs-ctl

These can be run directly from the directory.

To connect IVS to your Floodlight server, you need to tell IVS where the4.
OpenFlow server is:

snoble@build:~/ivs$ targets/ivs/build/gcc-local/bin/ivs --help
ivs: Indigo Virtual Switch
Usage: ivs [OPTION]...

 -v, --verbose Verbose logging



OpenFlow Deep Dive

[ 120 ]

 -t, --trace Very verbose logging
 -c, --controller=IP:PORT Connect to a controller at startup
 -l, --listen=IP:PORT Listen for dpctl connections
 -i, --interface=INTERFACE Attach a network interface at startup
 --pipeline=NAME Set the default forwarding pipeline (standard-1.0
or standard-1.3)
 --dpid=DPID Set datapath ID (default autogenerated)
 --syslog Log to syslog instead of stderr
 --inband-vlan=VLAN Enable in-band management on the specified VLAN
 --internal-port=NAME Create a port with the given name connected
to the datapath
 --hitless Preserve kernel flows until controller pushes
configuration
 -h,--help Display this help message and exit
 --version Display version information and exit

So to run IVS, connect to the Floodlight server and put two interfaces under5.
command, you would do the following:

sudo ivs -c 192.168.1.1 -i eth1 -i eth2

This tells the IVS to connect to a OpenFlow server at IP address 192.168.1.1 and
use eth1 and eth2 as the interfaces that it controls:

The preceding diagram shows what the PC running IVS configured as stated looks like.

Now that Floodlight and Indigo are connected, you can send some commands to the IVS via
REST.



OpenFlow Deep Dive

[ 121 ]

In the following example, the Access Control Lists (ACLs) on the switch are listed. Notice 
how similar the command is to how we integrated with FlexSwitch:

curl http://controller-ip:8080/wm/acl/rules/json | python -m json.tool

You can also delete all of the ACL entries:

curl http://controler-ip:8080/wm/acl/clear/json

About OpenDaylight
The ODL project was started in 2013 by a large number of networking companies including
Arista Networks, Big Switch Networks, Brocade, Cisco, and others.

The goal of the ODL project was to build an open source OpenFlow controller, which
would offer a more extensible platform than the currently available ones. ODL is built
around a concept of the Model-driven Service Abstraction Layer (MD-SAL), which utilizes
Yet Another Next Generation (YANG)—an interesting name for referring to this book:

The preceding diagram depicts ODL as first designed. It was a simple controller with a
REST API (REST is very common as we can see).



OpenFlow Deep Dive

[ 122 ]

Installing OpenDaylight
To install ODL, you can use the public releases, which can be found at: h t t p s ://w w w . o p e n d

a y l i g h t . o r g /d o w n l o a d s . Currently, the latest version is Carbon released on May 26, 2017.
The documents are located at h t t p ://d o c s . o p e n d a y l i g h t . o r g /e n /s t a b l e - b o r o n /g e t t i n

g - s t a r t e d - g u i d e /i n d e x . h t m l :

Installation platform
You can install ODL on UNIX or Windows systems. The easiest way to run ODL is in a
UNIX virtual machine using a tool such as Oracle VirtualBox, VMware, or Fusion/Desktop.

Here we will step through how to use VirtualBox and Ubuntu Server:

Install VirtualBox from h t t p s ://w w w . v i r t u a l b o x . o r g /w i k i /D o w n l o a d s for your1.
operating system.

https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
https://www.opendaylight.org/downloads
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
http://docs.opendaylight.org/en/stable-boron/getting-started-guide/index.html
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads


OpenFlow Deep Dive

[ 123 ]

Then, download the server iso for Ubuntu from h t t p s ://w w w . u b u n t u . c o m /d o w n2.
l o a d /s e r v e r . The current version is 16.04.2 Long Term Support (LTS):

Once you have downloaded Ubuntu, you will create a new virtual machine with3.
4 GB of RAM and a 16 GB disk. Follow these steps during the install:

Choose Linux and Ubuntu (64-bit) as the Type and Version of the1.
operating system:

https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server
https://www.ubuntu.com/download/server


OpenFlow Deep Dive

[ 124 ]

Increase the memory from 768 MB to 4096 MB (4 GB):2.

Set the hard drive size to 16GB:3.



OpenFlow Deep Dive

[ 125 ]

Once you boot the system, you will be presented with the following4.
screen; choose Install Ubuntu Server and continue through the default
choices until you get to the window that asks you to choose what
programs to install:



OpenFlow Deep Dive

[ 126 ]

Choose standard system utilities, OpenSSH server, and Manual5.
package selection:

After this, the system will reboot and you will log in using the6.
username and password you chose during the install. You will want to
log in and take note of the name of the primary Ethernet interface (ip
addr). It most likely will have a name that starts with enp such as
enp0s3

Now you will need to power off the machine by typing this:7.

       sudo poweroff

Now there are some steps that need to be done before you start the8.
machine back up. You will need to add a second network adapter and
configure it:



OpenFlow Deep Dive

[ 127 ]

Once your install is done, turn the machine on and run the following command:4.

ifconfig -a

You should see one interface with an IP and one without. The one with the IP
should be the same as the one you wrote down. In Ubuntu 16, they can have
different names. For example, on my test machine the names are enps03 and
enps08.

So to turn up the second Ethernet, I need to do the following:5.

sudo ifconfig enp0s8 up
sudo dhclient enp0s8



OpenFlow Deep Dive

[ 128 ]

Now you should see a new IP address under the ifconfig or ip addr6.
command:

3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc
pfifo_fast state UP group default qlen 1000
 link/ether 08:00:27:d9:10:f9 brd ff:ff:ff:ff:ff:ff
 inet 192.168.99.100/24 brd 192.168.99.255 scope global eth1

Here the IP of the ODL demo machine is 192.168.99.100. You should now be
able to access the machine using ssh.

Once on the machine, you will run the following commands:7.

wget
"https://nexus.opendaylight.org/content/repositories/public/org/ope
ndaylight/integration/distribution-karaf/0.6.0-Carbon/distribution-
karaf-0.6.0-Carbon.zip"

sudo apt install default-jre unzip libnl-3-dev libnl-genl-3-dev
libnl-route-3-dev pkg-config python-tz libpcap-dev make pkg-config
libssl-dev libcap-dev openvswitch-switch

unzip distribution-karaf-0.6.0-Carbon.zip
cd distribution-karaf-0.6.0-Carbon
export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk-amd64
./bin/karaf

snoble@odl:~/distribution-karaf-0.6.0-Carbon$ ./bin/karaf
Apache Karaf starting up. Press Enter to open the shell now...
100%
[==================================================================
======]

Karaf started in 5s. Bundle stats: 64 active, 64 total

OpenDaylight (in ASCII see picture).

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.
Hit '<ctrl-d>' or type 'system:shutdown' or 'logout' to shutdown
OpenDaylight.

opendaylight-user@root>



OpenFlow Deep Dive

[ 129 ]

You will get the following output:

Now that we have the OpenDaylight prompt, we can start looking at what is8.
installed:

opendaylight-user@root> feature:list -i
Name | Version | Installed | Repository | Description
-------------------------------------------------------------------
-----------------------------------
standard | 3.0.7 | x | standard-3.0.7 | Karaf standard feature
config | 3.0.7 | x | standard-3.0.7 | Provide OSGi ConfigAdmin
support
region | 3.0.7 | x | standard-3.0.7 | Provide Region Support
package | 3.0.7 | x | standard-3.0.7 | Package commands and mbeans
kar | 3.0.7 | x | standard-3.0.7 | Provide KAR (KARaf archive)
support
ssh | 3.0.7 | x | standard-3.0.7 | Provide a SSHd server on Karaf
management | 3.0.7 | x | standard-3.0.7 | Provide a JMX MBeanServer
and a set of MBeans in K



OpenFlow Deep Dive

[ 130 ]

By default, ODL has only a minimal number of packages installed. It doesn't have9.
the OpenFlow plugin or web GUI installed by default, so let's fix that:

opendaylight-user@root>feature:install odl-restconf odl-l2switch-
switch odl-mdsal-apidocs odl-dlux-core
opendaylight-user@root>feature:list -i
Name | Version | Installed | Repository | Description
-----------------------------------------------------
standard | 3.0.7 | x | standard-3.0.7 | Karaf standard feature
...
odl-config-api | 0.5.2-Boron-SR2 | x | odl-config-0.5.2-Boron-SR2 |
OpenDaylight :: Config :: API
odl-config-netty-config-api | 0.5.2-Boron-SR2 | x | odl-
config-0.5.2-Boron-SR2 | OpenDaylight :: Config :: Netty Config API
odl-config-core | 0.5.2-Boron-SR2 | x | odl-config-0.5.2-Boron-SR2
| OpenDaylight :: Config :: Core
odl-config-manager | 0.5.2-Boron-SR2 | x | odl-config-0.5.2-Boron-
SR2 | OpenDaylight :: Config :: Manager
odl-yangtools-yang-data | 1.0.2-Boron-SR2 | x | odl-
yangtools-1.0.2-Boron-SR2 | OpenDaylight :: Yangtools :: Data
Binding
odl-yangtools-common | 1.0.2-Boron-SR2 | x | odl-yangtools-1.0.2-
Boron-SR2 | OpenDaylight :: Yangtools :: Common
odl-yangtools-yang-parser | 1.0.2-Boron-SR2 | x | odl-
yangtools-1.0.2-Boron-SR2 | OpenDaylight :: Yangtools :: YANG
Parser
odl-openflowplugin-flow-services | 0.3.2-Boron-SR2 | x |
openflowplugin-0.3.2-Boron-SR2 | OpenDaylight :: Openflow Plugin ::
Flow Services
odl-openflowplugin-southbound | 0.3.2-Boron-SR2 | x |
openflowplugin-0.3.2-Boron-SR2 | OpenDaylight :: Openflow Plugin ::
Li southbound A
odl-openflowplugin-nsf-model | 0.3.2-Boron-SR2 | x |
openflowplugin-0.3.2-Boron-SR2 | OpenDaylight :: OpenflowPlugin ::
NSF :: Model
odl-openflowplugin-app-config-pusher | 0.3.2-Boron-SR2 | x |
openflowplugin-0.3.2-Boron-SR2 | OpenDaylight :: Openflow Plugin ::
Application - d
odl-openflowplugin-app-topology | 0.3.2-Boron-SR2 | x |
openflowplugin-0.3.2-Boron-SR2 | OpenDaylight :: Openflow Plugin ::
Application - t
odl-openflowplugin-app-forwardingrules-manager | 0.3.2-Boron-SR2 |
x | openflowplugin-0.3.2-Boron-SR2 | OpenDaylight :: Openflow
Plugin :: Application - F
odl-dlux-core | 0.4.2-Boron-SR2 | x | odl-dlux-0.4.2-Boron-SR2 |
Opendaylight dlux minimal feature
odl-l2switch-switch | 0.4.2-Boron-SR2 | x | l2switch-0.4.2-Boron-
SR2 | OpenDaylight :: L2Switch :: Switch



OpenFlow Deep Dive

[ 131 ]

odl-l2switch-hosttracker | 0.4.2-Boron-SR2 | x | l2switch-0.4.2-
Boron-SR2 | OpenDaylight :: L2Switch :: HostTracker
odl-l2switch-addresstracker | 0.4.2-Boron-SR2 | x | l2switch-0.4.2-
Boron-SR2 | OpenDaylight :: L2Switch :: AddressTracker
odl-l2switch-arphandler | 0.4.2-Boron-SR2 | x | l2switch-0.4.2-
Boron-SR2 | OpenDaylight :: L2Switch :: ArpHandler
odl-l2switch-loopremover | 0.4.2-Boron-SR2 | x | l2switch-0.4.2-
Boron-SR2 | OpenDaylight :: L2Switch :: LoopRemover
odl-l2switch-packethandler | 0.4.2-Boron-SR2 | x | l2switch-0.4.2-
Boron-SR2 | OpenDaylight :: L2Switch :: PacketHandler
odl-openflowjava-protocol | 0.8.2-Boron-SR2 | x | odl-
openflowjava-0.8.2-Boron-SR2 | OpenDaylight :: Openflow Java ::
Protocol

Note how many more applications are installed. These are the applications
necessary to make OpenFlow work. The important packages are as follows:

odl-l2switch-*: These packages provide a layer 2 learning
switch
odl-openflowplugin-*: These packages provide the OpenFlow
functionality
odl-dlux-*: These packages provide the web UI (called DLUX)
odl-yangtools-*: These packages provide the system with a
YANG interpreter

Now use OVS to connect to the controller:10.

sudo ovs-vsctl add-br openflow
sudo ovs-vsctl set-controller openflow tcp:127.0.0.1:6653

This creates an interface on the OpenDaylight box named openflow and connects
it to the OpenFlow port 6653 of OpenDaylight:

snoble@odl:~/ivs$ sudo ovs-vsctl list controller
_uuid : 90d84bdb-de30-436f-b0b1-c7171e0d58af
connection_mode : []
controller_burst_limit: []
controller_rate_limit: []
enable_async_messages: []
external_ids : {}
inactivity_probe : []
is_connected : true
local_gateway : []
local_ip : []
local_netmask : []



OpenFlow Deep Dive

[ 132 ]

max_backoff : []
other_config : {}
role : master
status : {sec_since_connect="599", state=ACTIVE}
target : "tcp:127.0.0.1:6653"

snoble@odl:~/ivs$ sudo ovs-vsctl show
70ccc243-1f5d-4737-97e7-955dc6ecb9ef
 Bridge openflow
 Controller "tcp:127.0.0.1:6653"
 is_connected: true
 Port openflow
 Interface openflow
 type: internal
 ovs_version: "2.5.0"

You should see something like this on the OpenDaylight DLUX UI:11.



OpenFlow Deep Dive

[ 133 ]

ONOS
The Open Network Operating System (ONOS) is a Software-defined Networking (SDN)
platform that provides an OpenFlow controller and integrates with OF-DPA and Indigo.

Installing and configuring ONOS
Using the same Ubuntu box from our ODL and IVS demos, we will stop Karaf and install
ONOS.

Similar directions can be found at h t t p s ://w i k i . o n o s p r o j e c t . o r g /d i s p l a y /O N O S /I n s t a l

l i n g +o n +a +s i n g l e +m a c h i n e . First we need to add the java repository to our Linux
machine, this is necessary to get the latest version of Java and to update if a security patch is
released.

sudo add-apt-repository ppa:webupd8team/java -y
sudo apt-get update
sudo apt-get install oracle-java8-installer oracle-java8-set-default maven
-y

We can now proceed to download and install ONOS. The first step is to acquire a copy of
ONOS, which we can accomplish using the web get tool (wget). The first two steps will
download and install ONOS, the next steps show logging in and what ONOS should look
like if devices are connected:

We will download ONOS into the /opt directory and expand it:1.

cd /opt
sudo wget -c
http://downloads.onosproject.org/release/onos-1.7.1.tar.gz
sudo tar xzf onos-1.7.1.tar.gz
sudo mv onos-1.7.1 onos

Then run ONOS:2.

snoble@odl:/opt$ /opt/onos/bin/onos-service start
karaf: JAVA_HOME not set; results may vary
Welcome to Open Network Operating System (ONOS)!
   ____  _  ______  ____
  / __ \/ |/ / __ \/ __/
 / /_/ /    / /_/ /\ \
 \____/_/|_/\____/___/

Documentation: wiki.onosproject.org

https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine
https://wiki.onosproject.org/display/ONOS/Installing+on+a+single+machine


OpenFlow Deep Dive

[ 134 ]

Tutorials: tutorials.onosproject.org
Mailing lists: lists.onosproject.org

Come help out! Find out how at: contribute.onosproject.org

Hit '<tab>' for a list of available commands
and '[cmd] --help' for help on a specific command.
Hit '<ctrl-d>' or type 'system:shutdown' or 'logout' to shutdown
ONOS.

onos>

At this point, ONOS is running on the server and you can log in by going to the3.
following link: http://192.168.99.101:8181/onos/ui/login.html
(replace the IP with the IP of your server).
Now log in with the onos username and rocks password:4.

The preceding screenshot is the default ONOS screen.



OpenFlow Deep Dive

[ 135 ]

The following is a screenshot from some earlier testing I did with ONOS,5.
showing two Pica8 switches connected with a few hosts and ONOS running in
multi-instance mode:

Summary
In this chapter, you learned about the history of OpenFlow, why it was invented, and what
issues it solves. We looked at how OpenFlow works internally and how an OpenFlow agent
and controller work together. Finally, we set up ODL and ONOS.

In the next chapter, we will look at VMware NSX.



7
VMware NSX

VMware's NSX is a network virtualization platform. Network virtualization replaced data
plane functions, such as routers, switches, firewalls, ports, and other physical network
hardware constructs in software. Replacing physical hardware with software versions
creates the Software-defined Networking (SDN) part of what is referred to as a Software-
defined Data Center (SDDC). These constructs are then used to create replacements or new
devices in the network. VMware acquired Nicra in 2012, and Nicra's Network
Virtualization Platform (NVP), together with VMware's Cloud, Network, and Security
(vCNS), and vSwitch created NSX.

In this chapter, we will cover VMware's NSX.

When done, you should have a good grasp of the following:

The origins of NSX
How NSX differs from OVS and ACI
How to design a network using NSX
How to install NSX
How to configure NSX

NSX
Now, let's begin with the NSX product. It consists of two parts—the NSX Manager and the
NSX Controller.



VMware NSX

[ 137 ]

NSX Manager
NSX Manager is the central management pane for all NSX-related objects within the data
center. It provides multiple interfaces, including a User Interface (UI) and an Application
Program Interface (API). It is also responsible for installing the vSphere Installation
Bundle (VIB).

The VIBs included with NSX are as follows:

VXLAN: Provides VXLAN support to vSphere
Distributed routing: Allows routing between VMs without leaving the NSX
network
Distributed firewall: A kernel-level firewall that can be offloaded onto a smart
Network Interface Card (NIC)

NSX Controller
NSX Controller is the central manager for NSX virtual networks and overlay technologies.
All information about logical switches, connected devices such as virtual machines, and
hosts is managed by the NSX Controller.

The history of virtualization
Virtualization originally showed up in servers, where VMware provided software to
virtualize servers and storage so that multiple servers could be run on a single hardware
device. Each server had its own shared or dedicated CPU, memory, and disk resources. As
the concept of SDN came along, the need for virtualized networks arrived. In the beginning,
network virtualization was local to the network adapters in the server, allowing multiple
virtual servers to share the same network connection.

While, initially, simple network virtualization was useful, the need for more powerful
features came along. These features, such as firewalls, hardware pass-through, and others,
pushed the industry to create better hardware with features such as SR-IOV, which is the
ability to utilize hardware features on network cards on multiple virtual machines,
essentially virtual functions.



VMware NSX

[ 138 ]

Where VMware came in
In the late 2000s, VMware introduced their vCNS product that combined with their vSwitch
to create a full stack solution for SDDC. At the same time, Nicira was developing the NVP
product. When VMware acquired Nicira in 2012, the combined R&D teams from both the
companies were able to release NSX in about a year.

The difference between NSX, ACI, and OVS
Both VMware NSX and Cisco Application Centric Infrastructure (ACI) provide
application-based network virtualization, with NSX focused on fully virtualized
infrastructure and ACI focused on hardware. OVS also provides network virtualization, but
it does not have the controller-based operation that ACI has with Application Policy
Infrastructure Controller (APIC) and the NSX Controller. The Open Virtual Network
(OVN) project creates a controller for OVS that focuses on layers 2-4, adding security 
groups and ACLs to OVS.

We will talk more about ACI in the next chapter.

How to design a network using NSX
The approach to designing a network around NSX is similar to designing any network; you
look at your L1-L7 needs and determine what hardware/software combination would fulfill
your needs. For this design, we will limit the design needs to the features available in NSX
and the hardware it supports.

The first part of the design will be the physical network, that is, the cables and hardware
that connect the servers together and to the network. For NSX, the underlying hardware
does not matter as long as it can provide L2/L3 connectivity between the servers running
the hypervisor, and therefore, the virtualized workloads. While there is integration with
physical servers via hardware that supports VXLAN, to fully utilize all of the features that
NSX provides the applications need to run as virtualized workloads.

NSX is a virtualization platform that runs on VMware's vSphere product, with ESXi as the
hypervisor and distributed vSwitch as the networking platform. NSX provides
orchestration across layers 2 through 7 of the networking stack. It uses overlay networking
to create virtual networks across physically routed networks.



VMware NSX

[ 139 ]

For network switches, any switch that supports VXLAN can be utilized with NSX. Some
Network Operating System (NOS) providers provide direct integration with NSX. Both
Big Switch and Cumulus Networks offer a hybrid solution with NSX. In the case of Big
Switch, the Big Cloud Fabric solution provides physical network orchestration and
interoperability with NSX VTEP. Cumulus Networks provide VXLAN support, and the
network is managed by NSX. Refer to the following diagram:

In this diagram, we see a generic view of NSX that runs above VMware's vSwitch and
provides micro segmentation with features such as routing, switching, firewall/filtering,
and load balancing. For this design, we are going to use open networking hardware in a
leaf-spine design.

Review of the leaf-spine design
In a leaf-spine network design, there are leaf switches (the switches that connect to the
servers). These are sometimes called Top of Rack (ToR) switches, connected to a set of
spines (switches that connect leaves together), and sometimes called End of Rack (EoR)
switches:



VMware NSX

[ 140 ]

We will use a Clos-based leaf-spine to construct our NSX network design, as shown in the
preceding diagram. We will use VXLAN Tunnel Endpoints (VTEP) to provide a single
virtual switch to NSX.

The physical design will look as illustrated in the preceding diagram with the addition of
virtual servers and a controller for the underlay. Now refer to the following diagram:



VMware NSX

[ 141 ]

In this diagram, you can see an SDN-managed physical underlay network that uses a
separate management network to control the switches. On the network, we are running
VMware vSphere on bare-metal servers with NSX handling the networking.

To NSX and the VMs, the network looks like a single logical network, as shown in the
following diagram:

Now that we have an idea of how the network will look, we can acquire the hardware and
start setting up VMware NSX.

Installing VMware NSX
For this process, we assume that you have the following:

VMware vCenter and vSphere version 5.5 or later has been installed on the server
hardware
You have at least two clusters
Your vSphere Web Client is working
All your switches are Distributed Virtual Switches (DvSwitch) with Maximum
Transmission Unit (MTU) greater than 1,600
Functional DNS and NTP configuration



VMware NSX

[ 142 ]

The suggested minimum NSX setup is as follows:

One NSX Manager per vCenter server
Three NSX Controllers

For our setup, we will have four ESXi host servers and run an NSX edge on each one of
them.

The minimum suggested hardware requirements for the preceding installation are as
follows:

30 GB memory
20 vCPU
122 GB disk

NSX also requires some ports to be open, including the following:

TCP
Port 22: SSH by default (this port is not enabled on the server)
Port 80: Communication between NSX Manager and NSX hosts
Port 443: Secure communication for APIs and OVA distribution
Port 1234: Communication between ESXi hosts and NSX
Controllers
Port 5671: RabbitMQ

Once you have acquired the correct resources and modified the filters to allow the ports we
just discussed, you can start the installation.



VMware NSX

[ 143 ]

Installation steps
To install NSX, perform the following steps:

The first step is to install and deploy the NSX Manager from the supplied Open1.
Virtual Format (OVF). This file is supplied by VMware in the NSX package.
Log in to the vSphere Web Client:2.



VMware NSX

[ 144 ]

Click on vCenter and then click on Hosts.3.
Alt + click on the ESXi Server that you want to install NSX Manager on and then4.
choose Deploy OVF Template...:



VMware NSX

[ 145 ]

Review the details, accept the End User License Agreement (EULA), and select5.
where to install NSX.
Set the normal user CLI password and the admin user password:6.



VMware NSX

[ 146 ]

Once the NSX Manager is deployed, log in to it:7.

Once you log in, you need to register the NSX Manager with the vCenter server.8.
Use the vSphere web interface to deploy NSX Controllers.9.
Once the NSX Controllers are installed, use the NSX Manager to install VIBs on10.
ESXi hosts.
Now that everything is installed, you can start defining the virtual firewall,11.
routing, and other NSX features.



VMware NSX

[ 147 ]

Working with NSX
Now that you have installed NSX, you can go back to the vSphere Web Client and manage
the network. In this section, we will add an AD server using LDAP. Here are the steps to do
this:

The first step is to choose Networking & Security from the sidebar:1.



VMware NSX

[ 148 ]

This will put you on the NSX control pane:2.



VMware NSX

[ 149 ]

Check the installation to confirm that all the controller nodes are visible:3.



VMware NSX

[ 150 ]

Now we will add the LDAP authentication server and configure NSX so that it4.
can utilize users in the firewall settings. First, we will select the NSX Manager
seen in the preceding screenshot:



VMware NSX

[ 151 ]

Now we need to set the LDAP Server, Port, User Name, and Password:5.



VMware NSX

[ 152 ]

Confirm that the connection method (CIFS) and port number are correct, select6.
use domain credentials if it is not already selected:



VMware NSX

[ 153 ]

Check the information here, confirm that the AD information is correct, and select7.
Finish:

In Chapter 13, Securing the Network, we will talk about setting up a firewall rule using the
AD credentials of a group of users.

A walkthrough of other NSX features
Now that we have completed configuring the basic features of NSX, let's look around and
check the information found in the GUI:



VMware NSX

[ 154 ]

In Dashboard, we will find the status of the deployed features, including the NSX Manager,
three controller nodes, eight logical witches, and five hosts. If there are any errors, they will
be noted here.

We also have the ability to look at the flows traversing the network. In this case, there is no
traffic to look at. We can look at the top flows, top destinations, and top sources:



VMware NSX

[ 155 ]

Under NSX Manager, we can monitor and manage system events, domains, users, and
other NSX-related information:



VMware NSX

[ 156 ]

Under the SpoofGuard tab object, we can see the policies being used by the different
vSphere devices:



VMware NSX

[ 157 ]

Finally, we can review how much hardware is necessary to run the setup of five hosts and
22 virtual machines with 35 networks and four data stores:

Summary
In this chapter, you learned about VMware NSX, its history, features, and use cases. You
should now have a general understanding of what VMware NSX is and how you can
integrate it into an existing or new SDDC.

In the next chapter, we will discuss Cisco ACI, another SDDC product.



8
Cisco ACI

Cisco's Application Centric Infrastructure (ACI) framework is an integrated solution of the
Nexus 9000 switching/routing hardware and the Application Policy Infrastructure
Controller (APIC) software. The solution is similar to VMware NSX and Big Switch
Networks' Big Cloud Fabric.

In Chapter 7, VMware NSX, we discussed the differences between NSX and ACI. While
there are many similarities, such as the use of an overlay network, VXLAN, and other
technologies, ACI is still a hardware-focused system, whereas NSX is a software-based
system. From a technical perspective, NSX can be integrated into ACI and provides
complementary features.

ACI was created at Insieme Networks, a spin-in company that Cisco originally funded and
then acquired. ACI is a straightforward concept where policies are applied to end
users/groups instead of interfaces; these policies are called Endpoint Groups (EPGs).

At the 10,000 foot level, an ACI network looks just like a normal leaf-spine network. As you
dig deeper, you see the overlay aspects provided by APIC and ACI.

In this chapter, we will cover Cisco ACI's hardware-based network virtualization platform.

When done, you should have a good grasp of the following:

The origins of ACI
The concept and use of EPGs
The current scale limits of ACI
How to design a network using ACI
How to install ACI
How to configure ACI using the GUI and CLI



Cisco ACI

[ 159 ]

ACI terminologies and concepts
ACI has a few concepts that need to be understood before getting into design and
deployment.

Contracts
A contract in the ACI/APIC world is a combination of two pieces of information—a filter
that tells the contract what to operate on and an action that states what to do when the filter
is matched.

APIC configuration
The APIC configuration is created via either the GUI or CLI on the APIC controller. It is the
central repository for network design information.

Policy model
The policy model manages the network fabric, including the physical hardware, users,
services, and applications. It defines how the fabric manages features and their
configurations.

Logical model
When APIC configures a network, it produces a logical model that references the physical
model. The logical model holds information about the entire network, including hardware,
software, interconnects, and hosts.

Concrete model
The concrete model is rendered by NX-OS on the switches based on the logical model. In
the event the APIC controllers become unreachable, the system will continue to operate, but
no changes can be made.



Cisco ACI

[ 160 ]

Tenants
The term tenant is often used for the end device, but in this case Cisco uses it to describe a
group of policies that are used to manage access control across the entire fabric. A tenant
can represent an end customer, organization, or a just a group of policies.

Cisco defines four types of tenant:

User tenant: User tenants are based on end-user needs; policies created here tend
to focus on end devices, such as web servers, database servers, and so on.
Common tenant: The common tenant defines what services are available to all
the tenants. It is managed by the fabric administrator.
Infrastructure tenant: The infrastructure tenant defines the network services
available to user tenants.
Management tenant: The management tenant manages the in-band and out-of-
band configuration of the switching nodes.

EPGs
An EPG is a policy that defines a group of devices that are treated similarly and provides a
container around them.

The concept behind EPGs is that organizations have multiple servers/devices that utilize the
same policies, such as filtering, port forwarding, and so on. To use them, users determine
whether their current traditional networking design can be converted or whether they will
need to modify the network design.

EPGs can be defined by multiple criteria, such as VLAN ID, IP address blocks, system type,
and software version (when connected to a virtualized system that supports ACI
integration).



Cisco ACI

[ 161 ]

EPGs can be linked together using Application Network Profiles, where permissions
between groups of EPGs are defined:

EPGs can be used in many ways, including replicating the behavior of traditional network
constructs such as VLANs, IP subnets, VXLANs, VMware port groups, and others.

In cases where EPGs are used to replicate a current VLAN infrastructure, each VLAN is
replaced by a single EPG and then all policies are applied to it directly:



Cisco ACI

[ 162 ]

For IP subnets, the IP address space is used to define the devices contained within the EPG:

For other examples, the construct is the match within the EPG.

ACI modes
ACI can be configured in a few different ways, including the following:

L2 Fabric: The L2 Fabric configuration or legacy mode has no routing or L3
concepts. Tenants are represented as a set of EPGs.
L3 Fabric: The L3 Fabric configuration adds the L3 features available in ACI and
the concept of tenants.
Stretched Fabric: The Stretched Fabric design allows multiple fabrics (up to
three) to be managed as a single fabric, even if the fabrics are in different
locations.
Multipod: This is a more fault-tolerant fabric utilizing multiple pods or fabric sets.
Depending on the location of the switches and servers, multiple pods could be
located on the same and/or different floors.



Cisco ACI

[ 163 ]

ACI requirements
One of the main requirements of ACI is that it requires a minimum of three APIC
controllers; this allows a quorum to be reached between controllers, so two controllers must
have a configuration change before it can be applied. In a large deployment, up to five
controllers are supported.

Network design using ACI
From a hardware and cabling aspect, an ACI network will be the same as any leaf-spine
network. The requirements are that all leaf switches are connected to all spine switches and
no spine or leaf switches are connected together. Virtualized networks are created on top of
the physical network to provide the necessary application policies. Refer to the following
diagram:



Cisco ACI

[ 164 ]

In this diagram, you can see that the network looks almost exactly like the one used for
NSX, only the switches have been replaced by specific Nexus 9300 models and the
virtualization is now generic. In this case, it does not matter what the virtualization system
is. ACI is agnostic to the VM server but can interoperate with VMware and others.

Three controllers are necessary for production deployment, and by default two must agree
with each other before a change is allowed. This is similar to how NSX works; it also
requires three controllers.

As the ACI overlay is implemented, the virtual design will look similar to the NSX design.
The main difference will be the concept of EPGs, which is similar to the way NSX handles
VXLAN. EPGs are a set of devices that are treated similarly. By default, all EPGs are deny-
all, so all traffic is dropped until rules are applied.

EPGs can be defined based on many criteria; a few of them are listed here:

VLAN ID
VXLAN ID
System name
Operating system



Cisco ACI

[ 165 ]

For example, you could create an EPG with the policy that any VM that starts with xyz or is
running Windows Server is part of the EPG. You can also base the EPG on what the service
type is, such as a database or web server. Refer to the following diagram:

In this diagram, you can see that there are two types of VMs and Web. For this design, there
are two EPGs: the DB and Web. DB is only accessible to Web (red link), but Web is
accessible to the outside world (blue link). The simplicity of the design helps to keep the
network and devices manageable.

In the preceding design, EPGs are based on the type of server DB or Web that is running on
the system. While the design only includes two types of EPGs, up to 21,000 L2 or 15,000 L3
EPGs can be defined as of ACI v2.2.



Cisco ACI

[ 166 ]

Configuration via the GUI
The GUI for APIC is straightforward, with a menu and submenu tabs along with context-
sensitive help. The Quick Start section is helpful when you are first setting up the system.
Note that in this demonstration, we only have one controller instead of the three that are
necessary for production deployment.

In the following diagram, you can see the main menu and the submenu. When we discuss
buttons, we will refer to these this way:

If we run the First setup for the ACI fabric quick start, it walks us through the process of
setting up the initial important data, such as the Border Gateway Protocol Autonomous
System Number (BGP ASN). For demo purposes, I am using my own ASN, 15096:



Cisco ACI

[ 167 ]

For configuring ACI, follow these steps:

In the event that you do not have an ASN, you can utilize the reserved ones from1.
the block 64,512 - 65,534:



Cisco ACI

[ 168 ]

Here I have entered the ASN for the system but have not included any route2.
reflector nodes. A route reflector is a router that reflects or mirrors the routes it
receives to its neighbors:

Next, set up Network Time Protocol (NTP). I generally use the ntp.org pool for3.
the area I am in; for example, us.pool.ntp.org is an alias for multiple NTP
servers located near or in the US.



Cisco ACI

[ 169 ]

To add an NTP server, click on the + button in the following screenshot the4.
Management EPG label on the right-hand side:

When you add the NTP server, you have a few options that can be set, including5.
the polling interval (how often you check the time) and a management EPG that
has connectivity to the NTP server. Here, you also choose whether it is a
preferred server:



Cisco ACI

[ 170 ]

Once the NTP server is configured, you will see it on the page:6.



Cisco ACI

[ 171 ]

Next, you need to set up Out of Band (OOB) EPGs. In the following screenshot,7.
they are all on private IP space in the 10.1.1.0/24 region:



Cisco ACI

[ 172 ]

Now we can add a user that can manage tenants. Go to the Admin menu and8.
choose the AAA Authentication submenu. You should see something similar to
the following:

Now go to Security Management and choose Local Users. Under the ACTIONS9.
tab on the right-hand side, choose Create Local User:



Cisco ACI

[ 173 ]

We start with security, adding the user to the correct security domain:10.



Cisco ACI

[ 174 ]

Set up the user to administrate tenants:11.



Cisco ACI

[ 175 ]

You can set an expiration for the user:12.

Now we look at the final user configuration. Determine whether it is correct and13.
modify any data that is incorrect:



Cisco ACI

[ 176 ]

Hit FINISH. And we can now see the user:14.



Cisco ACI

[ 177 ]

Now that we have set up the nodes, we can go ahead and browse fabric devices:15.

Here, we dig into the properties of a fabric system, in this case, TEP-1-101:16.



Cisco ACI

[ 178 ]

We can also view the health of the entire pod:17.

We can visualize the setup as well:18.



Cisco ACI

[ 179 ]

We can look at a picture of what the different boxes look like, with the ports19.
showing configured (orange) or unconfigured (red):

In the following screenshot, we can see the properties of the BGP configuration20.
we set up initially:



Cisco ACI

[ 180 ]

And finally in the following screenshot we can see the limitations of the system.21.

Configuration via the CLI
Configuring ACI via the CLI is similar to configuring NX-OS; in fact, you can configure ACI
from the NX-OS CLI.

Example 1: Adding a new user

In the first example, we will add a new user to the APIC system:

9k-1# configure
9k-1(config)# username user1
9k-1(config-username)# password notagoodpassword
9k-1(config-username)# exit



Cisco ACI

[ 181 ]

Example 2 : Enabling in-band management

In this example, we will enable in-band management:

First, we need to assign a VLAN to the management ports; we will use VLAN 20:1.

      9k-1# configure
      9k-1(config)# vlan-domain inband-mgt
      9k-1(config-vlan)# vlan 20
      9k-1(config-vlan)# exit

Next, we will configure external connectivity rules for the ports that we will use2.
for management. These ports are connected to the APIC controllers:

      9k-1# configure
      9k-1(config)# leaf 201
      9k-1(config-leaf)# interface ethernet2/1
      9k-1(config-leaf-if)# vlan-domain member inband-mgt
      9k-1(config-leaf-if)# exit

      9k-1(config)# leaf 202
      9k-1(config-leaf)# interface ethernet2/2
      9k-1(config-leaf-if)# vlan-domain member inband-mgt
      9k-1(config-leaf-if)# exit

Lastly, we need to tell the system to use the inband management:3.

      9k-1(config)# mgmt_connectivity pref inband

Example 3 - Create a new tenant and attach it to EPGs

For the next example, we will create a new tenant and attach it to the existing EPGs.
Perform the following steps:

Enter the configuration mode and define the tenant and the VRF associated with1.
it:

9k-1# configure
9k-1(config)# tenant demo
9k-1(config-tenant)# vrf context cli_demo
9k-1(config-tenant-vrf)# exit



Cisco ACI

[ 182 ]

Create a new bridge domain and attach the VRF to it:2.

9k-1(config-tenant)# bridge-domain cli_demo_bd
9k-1(config-tenant-bd)# vrf member cli_demo9k-1(config-tenant-bd)#
exit

Configure an IP address on bridge-domain:3.

9k-1(config-tenant)# interface bridge-domain cli_demo_bd
9k-1(config-tenant-interface)# ip address 192.168.10.1/24
9k-1(config-tenant-interface)# exit

Attach the tenant to the predefined EPGs, namely WEB and DB:4.

9k-1(config-tenant)# application 2-TIER
9k-1(config-tenant-app)# epg WEB
9k-1(config-tenant-app-epg)# bridge-domain cli_demo_bd
9k-1(config-tenant-app-peg)# exit
9k-1(config-tenant-app)# epg DB
9k-1(config-tenant-app-epg)# bridge-domain cli_demo_bd
9k-1(config-tenant-app-epg)# exit
9k-1(config-tenant-app)# exit
9k-1(config-tenant)# exit

Now that the tenant and services are attached to bridge-domain, the system is configured.

Configuration via wizards
Wizards allow system administrators to configure ACI easily by simply answering
questions. One example is the tenant wizard:

admin@apic-demo:tenants> ./tenant.wiz
tenant
------
name : DemoCustomer
alias : DemoCustomer_tenant
description : This is DemoCustomer
monitoring-policy : default
private-network
---------------
name : DemoCustomer_net
description : DemoCustomer Network
bgp-timers : default
ospf-timers : default
monitoring-policy : default
bridge-domain



Cisco ACI

[ 183 ]

---------------
name : DemoCustomer_domain
description : DemoCustomer BD
network : ?
 default network
 inb network
 overlay-1 network
network : inb
Do you want to create another private-network (y/n): n
Do you want to view the corresponding commands? (y/n): y
---------------------------------------------------------------------------
-----
mocreate DemoCustomer
cd DemoCustomer
moset alias DemoCustomer_tenant
moset description This is DemoCustomer
moset monitoring-policy default
cd /aci/tenants/DemoCustomer/networking
cd /aci/tenants/DemoCustomer/networking/private-networks
mocreate DemoCustomer_net
cd DemoCustomer_net
moset description DemoCustomer Network
moset bgp-timers default
moset ospf-timers default
moset monitoring-policy default
cd /aci/tenants/DemoCustomer/networking/bridge-domains
mocreate DemoCustomer_domain
cd DemoCustomer_domain
moset description DemoCustomer BD
moset network inb
cd /aci/tenants/DemoCustomer/networking/private-networks/DemoCustomer_net
cd /aci/tenants/DemoCustomer/networking
cd /aci/tenants/DemoCustomer
Do you want to commit changes? (y/n): y
Committing all the mos...
Committed mo tenants/DemoCustomer
Committed mo tenants/DemoCustomer/networking/private-
networks/DemoCustomer_net
Committed mo tenants/DemoCustomer/networking/bridge-
domains/DemoCustomer_domain
done
admin@apic-demo:tenants>



Cisco ACI

[ 184 ]

Configuration via REST
Cisco offers a RESTful interface to the APIC controller. In the previous chapters, we
discussed how REST works and how tools such as Postman allow you to easily work with
and test RESTful functions.

First, you need to build a login object:

Choose POST and enter1.
https://apic.host.address/api/mo/aaaLogin.xml.
Choose raw for the body and put in <aaaUser name='USERNAME'2.
pwd='PASSWORD'/> replacing it with your username and password:

Once you click on Send, you should be logged in to the APIC server. You can3.
now continue and do other REST calls.



Cisco ACI

[ 185 ]

Here is an example of how to query APIC for a list of tenants. Choose GET from4.
the Postman drop-down.
Enter https://apic.host.address/api/class/fvTenant.xml in the
request URL space:

Summary
In this chapter, you learned about Cisco ACI and how to navigate the CLI, GUI, and
RESTful interfaces. We also discussed how to set up a new APIC-driven network; configure
the management network, users, tenants, and interfaces; and add a BGP ASN to the
configuration.

In the next chapter, we will put all of the data together to learn how to design a NGN.



9
Where to Start When Building a

Next Generation Network
In the previous chapters, we discussed designs around hardware, designs around software,
and generic concepts. Most of this work is simple when you already have a network that
you are extending, but if you have a greenfield network, then there is more planning to do.

When you are done with this chapter, you should have the grasp of the following topics:

A good understanding of network design fundamentals
Ideas about what network hardware and software to use
Knowledge of how to run a Proof of Concept (PoC) with a vendor
An understanding of Service Level Agreements (SLAs) and what level of
support is needed



Where to Start When Building a Next Generation Network

[ 187 ]

Network design fundamentals
In the first eight chapters of this book, you learned about different technologies that are
considered next-generation. No matter what hardware or software you decide to utilize, the
physical design will be similar. The main differences will be whether you have physical
firewalls, load balancers, or other network function devices in the path.

Going back to the concepts from our introductory chapter, we will review the most
important ones.

A leaf-spine network uses the concepts of edge/leaf switches and core/spine switches. A
network can be interconnected in a few different ways, including a full mesh, as in a Clos
design, or partially meshed, as in a Benes design.

Multidimensional designs
The similarities between designs come from the fact that the physical act of networking has
become simplified, with switches and routers able to handle all of the bandwidth
requirements of the devices inside the rack. When designing, we focus on the concept of a
Point of Delivery (PoD), which can be a partial rack, full rack, or multi-rack design that can
be easily replicated to minimize troubleshooting effort and sparing.

PoD
A PoD is a construct that contains all the necessary parts to operate a service, such as
compute, storage, and networking. As mentioned earlier, it can be almost any size, but is
logically constrained to the smallest amount of equipment necessary—compute, storage,
and network. These could all be contained in one-third of a rack up to a set of racks,
normally no more than 16 due to switch port constraints.



Where to Start When Building a Next Generation Network

[ 188 ]

Single-rack design
Designing the network in a single rack, where all the devices—such as servers, storage, and
networking equipment—are in a single rack, is one of the building blocks of a PoD. In
general, you will have two switches and/or routers in a rack to provide redundancy. Refer
to the following diagram:

This is a simple rack design with a pair of Web Server/Database Server/Storage.



Where to Start When Building a Next Generation Network

[ 189 ]

Multi-rack PoD design
Here is a multi-rack design where the center of the three racks is the main connection to the
outside world:

This design uses the middle rack as the main connection to the outside world.

The following is a simplified diagram of the physical design of a PoD:



Where to Start When Building a Next Generation Network

[ 190 ]

As shown in the preceding diagram, storage is connected to the database server and the
web server via SAS/FCoE. Both the database server and web server are connected to the
distribution switch / Top of Rack (ToR). If we collapse the design to show just the switches,
routers, load balancers, and other network equipment, it will look exactly like any other
design:



Where to Start When Building a Next Generation Network

[ 191 ]

The preceding design is typical of a small data center where there are two core switches,
otherwise known as End of Rack (EoR), and two distribution or ToR switches. For a fully
redundant design, you would need two routers, two load balancers, and so on with two
separate uplinks to your provider(s):

Here we see a fully redundant design. The links between the switches can be active-active
(both paths are used and traffic is load-balanced), but the links between the core switches,
load balancers, firewalls, and routers should be active-standby to avoid issues with traffic
entering and exiting from different locations. When you use ACI or NSX, your firewalls and
load balancers may be virtual, as seen in the following diagram where the routers and
switches are physical, but the functions such as a load balancer and firewall are virtualized
on the host server.



Where to Start When Building a Next Generation Network

[ 192 ]

In a virtual design, even the uplinks are virtual; each server is connected to both the
switches and then the firewall, load balancer, and other features are placed inside the
server. If you expand the design to a multiple core switch design, you will see the Clos
design implemented. Here's how it looks:



Where to Start When Building a Next Generation Network

[ 193 ]

Deciding on the hardware and software
Open or closed, that is the question. In a network design, you can use both, but it's
important that you understand the value of both. In the last few chapters, we've gone 
through both the options. Now we will look at different support needs and how they will
affect our decision.

Proprietary hardware-based designs
Chasing a proprietary design limits you but allows you to have one throat to choke support,
where if you have an issue, you can pay to have it solved within 4 hours.

In this space, you will find standard, well-known vendors such as Cisco, Juniper, and Dell.
While Juniper and Dell do have Open Networking (ON) versions of hardware, they also
sell proprietary, commercial versions. With a top-tier vendor, you have access to a bevy of
support options, including basic, next-day, 4 hours, and others. Top-tier vendors also sell
access to dedicated software and networking support engineers.

Cisco ACI and Juniper's Contrail are both SDN solutions. Contrail is offered as open source,
but realistically you would want Juniper's support when deploying.

Open hardware-based designs
When it comes to open hardware-based designs, we could choose from Accton/Edgecore,
Quanta, or Dell (ON series only) for our vendor and run an open operating system, such as
Cumulus Linux, or a closed one, such as Pica8's PicOS. The cost will be much less than
hardware plus software from a proprietary vendor. Support will generally be split across
two organizations, namely the hardware manufacturer and the software manufacturer.



Where to Start When Building a Next Generation Network

[ 194 ]

For example, if we take hardware from Edgecore, AS5712-54x being the most widely used
(48x10 GB ports + 6x40 GB ports), and add software from Cumulus, we can assume that our
costs will be n+1 hardware (one spare for quick replacement) and the software license for
Cumulus. If you utilize something like Open Network Linux (ONL) with Open Route
Cache (ORC) and an open source routing solution, such as FRR (a fork of Quagga), there is
only the hardware cost.

Support needs
First things first, we need to understand how much vendor support we are looking for, that
is, do we want a 4 hour turnaround or can the networking team manage the network with
8/5-day support and keeping spare parts for their networking equipment in the event of
hardware failure. Obviously, if the need is for a 4 hour turnaround, a vendor such as Cisco
or Juniper needs to be involved as they are the only networking companies with the ability
to support a customer with 24x7x365 plans. I remember back in Exodus, when we had the
RP in a Cisco 7500 fail in a remote location, Cisco had a replacement RP on site within 4
hours and we were able to get the router back up. We paid a lot of money for the service,
but it was worth it.

24x7x365 full support
If you need full support, including 24x7 phone and a 4 hour replacement guarantee, then
you only have a few options: Cisco, Juniper, or Dell EMC. While Juniper does offer some
ON switches, you will still end up working with their proprietary ones.

It is important to remember that, even with the best support level that Cisco, Juniper, or
others provide, you will not get code fixes or modifications immediately. You may end up
waiting for months for Cisco to provide you with a new version of the software for your
switch unless there is a CERT issue (security issue) that needs to be fixed.

If we focus just on Cisco, we will look at the options provided with the Nexus 9000 and
ACI. As a side note, ACI can integrate with VMware, so there are options where you can
have both. The main issue with ACI tends to be the complexity of the design, so the
addition of NSX to it will only complicate it further.



Where to Start When Building a Next Generation Network

[ 195 ]

Business hours support
If you are able to handle most of the support and use resources sparingly, you can save a lot
of money. If you use open source hardware and software and have a reasonably strong C
programmer on your team, you can fix most issues and add features yourselves. Features
will also be added by other members of the open source community. Issues with the base
operating system will generally get patched quickly.

Sparing open networking equipment is simple as many switches can be used for multiple
purposes.

Request for Information (RFI) and Request for
Quotes (RFQ)
Both RFI and RFQ are part of the process of choosing a vendor. Normally, an RFQ will be
filled with a lot of easy checkboxes for different protocols and features.

An RFI will contain different sections, such as physical and performance, and features such
as MPLS and IPv6:

At the beginning of an RFI, you will have a cover sheet that will describe what1.
you are looking for. In the following case, we are looking for two solutions:

Core switching: Core switching is simpler than SDDC as it only
needs to handle transit packets. It is the spine of a leaf-spine design
SDDC switching: SDDC switching is more complex as it involves 
handling VXLAN traffic and performing Virtualized Network
Services (VNFs)



Where to Start When Building a Next Generation Network

[ 196 ]



Where to Start When Building a Next Generation Network

[ 197 ]

After the cover sheet, it is good to have a simple description/objective list that2.
covers what you are looking for and general legal disclosures:



Where to Start When Building a Next Generation Network

[ 198 ]

Here are a few simple instructions on how to fill out an RFI:3.



Where to Start When Building a Next Generation Network

[ 199 ]

In the next document, we describe some of the physical attributes we need to4.
know about the switches, such as dimensions, weight, and the number of
interfaces:



Where to Start When Building a Next Generation Network

[ 200 ]

In the next part, we talk about performance, MPLS, and general concepts such as5.
L3VPN:

Proof of Concept (PoC)
Once a decision has been made about the equipment vendor(s), the next item of the
business is to set up a PoC to determine that the equipment meets your needs. Companies
such as Cisco and Juniper have PoC labs where they can assemble all of the networking
equipment necessary to prove that the design works.

Once your RFI is done and all the general questions are answered, it's time to do a PoC. A
PoC can be as big or small as the vendor can handle. Normally, you would have at least one
instance of each device you expect to use and the expected workload information to test
with. When I ran the customer simulation team at Procket Networks, we often hosted
companies in our lab where we had two large routers, three small routers, some network
testing equipment, and a few Cisco/Foundry/Juniper devices.



Where to Start When Building a Next Generation Network

[ 201 ]

Before PoC, we would normally get a design from the customer and attempt to replicate it
as best as possible. Often, we would not have all of the equipment necessary, but we could
come up with a plan on how to demonstrate the ability of our systems.

Cisco and Juniper have much bigger PoC labs and more resources. If you are a reasonably
sized customer, you can ask for a PoC and note the equipment that you would like to have.
PoC is where you can test the equipment to make sure that the answers to the RFI are
correct. Often, companies will report single dimensional numbers, such as the number of
IPv4 routes they can handle, with no IPv6, ACL, or other items filling up TCAM memories.

When I worked for Cisco, I handled many PoCs on customer sites. One CRS PoC took three
weeks and involved three different companies bidding for the business. As a highly
qualified QA/tester, I arranged the test equipment from Spirent and handled the setup and
testing of the different routers. One of the lessons I learned from this PoC was that some
vendors claim numbers much higher than possible, based on well-designed tests that only
looked at simple numbers.

Some of the tests we ran were highly unlikely to happen in real life, such as 40-byte packets
at line rate across OC-192 (10G) links. These were things the customer asked for but
understood were just checkboxes. This is because, realistically, no vendor can handle that
type of traffic for any amount of time.

Designing a PoC
The most important thing in a PoC is to test the parts of your network design that
differentiate you from the standard network design.

For example:

The network may have the need for a high number of ACLs
The network may have high latency or jitter-sensitive traffic, such as the needs of
stock trading floors or video rendering/editing studios
The network may need carrier grade NAT or 6rd (rapid IPv6 deployment over
IPv4 network)
These needs can be translated into tests, such as forwarding performance with
10,000 ACL rules installed on an interface

This type of test needs to be done bidirectionally, with normal traffic
crossing other ports on the same switch fabric to confirm the impact of the
ACL rules.



Where to Start When Building a Next Generation Network

[ 202 ]

For latency and jitter, you can run a test with important streams being heavily monitored,
then send significant traffic to other ports to confirm that Quality of Service (QoS) is being
handled correctly.

Running a PoC
In general, a PoC should take no more than a week, depending on the number of tests that
need to be done. If advanced planning has been done, then the equipment should be set up,
cabled, and configured with a base configuration that allows you to quickly add extra
configuration items.

A PoC should have a tracking document similar to the RFI that would list the requirements
and have places for checkboxes, numbers, and notes. For example, if you run a performance
test with ACLs and during the test you are able to scale to 8,500 ACL rules without
impacting traffic, you would note that in the PoC tracking document. If the test is done with
only standard ACLs (source IP only) or extended ACLs (source IP, destination IP, protocol,
and so on), that will also be recorded.

If a vendor has issues in completing any of the requirements, it is better to skip the test and
let the vendor troubleshoot the issue than to immediately fail them.

Finishing up a PoC
Once the tests are complete, a final tally can be completed and vendors can be compared
side by side. If there are problem areas with vendors where they are unable to show their
equipment functioning as they stated, that should be taken into account.

Once you have all of the data, you can make a decision about what vendor you believe is
the right choice and start negotiations about price and support.

Summary
In this chapter, we talked about choosing between open and proprietary hardware and
software. We covered the support levels that can be expected and how your support needs
may guide your decisions. We covered the RFI and PoC concepts and how to handle them.

In the next chapter, we'll have a detailed look at designing an altogether new next
generation network, using all the concepts that we looked at in this chapter.



10
Designing a Next Generation

Network
In the previous chapter, you learned about RFI, PoC testing, and the support differences
between open and proprietary network devices.

By the end of this chapter you will able to do these:

Determine the size and state of the installation (new or additional)
Utilize the information from the RFI/PoC stage to determine the necessary
equipment
Assemble a final list of equipment that is necessary to build an NGN

Terminologies used in this chapter
We will use some new terms in this chapter; they are explained in the following sections.



Designing a Next Generation Network

[ 204 ]

Equipment racks – two post, four post, and
enclosed
Essentially, there are a few different types of rack that are used in data centers. Most often,
you will see an enclosed four post rack (I don't think I've seen an enclosed two post rack),
which is essentially a cabinet with mounting brackets and the width of the equipment is 19
inches (or 21 inches for OCP) and 28 inches or more deeper. While you can have open four
post racks, they are generally not used. Two post racks are racks where there is only one
location to attach equipment and the equipment essentially floats outside the rack. In a two
post rack, equipment can also be mounted in the center for more stability.

Two post and four post racks



Designing a Next Generation Network

[ 205 ]

Airflow
When looking at equipment, there are multiple ways the cooling fans can operate. In Front
to Back (F2B), the fans take the air from the front and push it out through the back, like a
standard computer. In Back to Front (B2F), the air is taken from the back and pushed out
through the front. In side-to-side, the air comes in from one side and goes out the other.

In general, most equipment runs F2B; however, how you mount the equipment can change
which airflow design you need. For example, a Cisco ISR router has all of the ports on the
back, which means you should mount it backwards, with the Cisco bezel pointing inwards.

New versus old or greenfield versus brownfield
The concept of new versus old is very important to network design. You cannot properly
design a network as an addition to an existing network without knowing all of the
information about the old equipment including power use, heat, airflow, and weight.

Physical location
One of the most important parts of your design is based on whether the design is for a new
location where the entire design is new or a current location where the design must fit
together with other equipment. The deployment concept is called greenfield or brownfield,
referring to a new site as green like new grass in a field and an old site as an old brown
field.

When studying a new location, there are some pieces of information you will want to
gather:

What are the dimensions of the room/cage where the NGN will be deployed?
What is the furthest distance from the core of the network to the edge or ToR
switches?
How is power distributed? Do you have access to 48V DC or just 120/240V AC?
Are the power junction boxes coming from the ceiling or the floor?
What floor is the deployment on? What is the amount of weight per square
foot/Kilo Pascals (kPa)—the metric equivalent, supported?
Do you have enough access to get the amount of fiber/copper into the room,
accounting for physical firewalls in the ceiling?



Designing a Next Generation Network

[ 206 ]

Most, if not all, of this information should be known by the facilities manager. If there are
questions about power, cooling, and so on, those may need to be referred to specialists. It is
very important that all of the minimum specifications are met, otherwise when the
equipment is installed there will be issues.

New location – greenfield
Since a greenfield network is much easier to deal with, we will start there. Once a site
survey has been completed and the available power, cooling, space, and other important 
details are collected, the design can start.

Normally, the design will call out the specifications necessary for space and power and list
the worst-case heat dissipation necessary. Some initial design concerns should be around
airflow (F2B or B2F, never side-to-side), weight, and the type of rack (enclosed, four post, or
two post).

Here, we utilize the RFI data about weight, size, and power usage to determine what the
worst-case scenario would be. We also need to plan for upgrades and additions. The good
thing is that over time the power per byte goes down, so a basic rule is to take double what
you need to build the initial setup, and make sure that the minimum specifications meet
those demands.

Old location – brownfield
In a brownfield network, the same rules as a greenfield network apply except that you will
be restricted to the power, cooling, and space available. Your design will encompass the
current network, the upgrade path, and plans. Most networks are replaced in situ, where
parts are replaced one by one or in groups and then swapped over. At the end of the
chapter, there is a small section on moving from the old network to the new one.

Care must be taken to confirm that new and separate power has been pulled into the
location for the new devices to derisk the installation. Cooling and floor weight capacity
must be verified and confirmed so it meets or exceeds the worst-case calculations for the
new equipment.



Designing a Next Generation Network

[ 207 ]

In the event the equipment room was already designed to hold more equipment, you will
want to verify that everything is correct and working. Often power will be reused by
engineers to do what they need, without consideration for what the power is supposed to
do.

If there is not enough power per rack for the design you are looking for, you may need to
use more racks and limit the number of servers per rack, which will define how many ports
you will use off the switches.

Using RFI/RFQ information to design the
network
Now that we have the site survey information and the available power, cooling, and space,
we can start designing and calculating what our needs are for the network. After the PoC,
we will refer to the RFI, where we have physical specifications for each device. The data
may also be available online, which is generally how we get data for open networking and
white-box systems.

We will take the data from the PoC and RFI to determine the amount of equipment we will
be using and the characteristics of the equipment. Remember, if you are using Direct Attach
Cables (DACs) or fiber transceivers, we need to account for them.

Design the network for expansion; you may need to add more cards to certain devices later,
but those devices should have available slots for expansion. For example, if your design is
two racks in a pod with two router/switches, two aggregation (ToR) switches, and a
significant amount of compute/storage hardware, you will want to design for the addition
of two more racks, where the two main routers/switches will become the spine of the
network.



Designing a Next Generation Network

[ 208 ]

In the following diagram, we have two rack pods where there is a router, firewall, load
balancer, and two core switches in each:

In this diagram, we have connected two more racks to the pod and are using the core
switches as a spine:



Designing a Next Generation Network

[ 209 ]

Facebook created the CWDM4-OCP optic. These optics use less power
than the standard CWDM4 and helped Facebook keep the design of their
new 100G switch within the expected power and cooling range.

Designing using the Cisco ACI
Now we will do the calculations on a design using the Cisco Nexus 9000 series switches.
From the RFI response, we know that the chassis alone weighs 84 lbs (38.2 kg), which is
normal for equipment of this size. We should mount the switch lower in the rack if possible
to avoid issues with the rack becoming unstable.

We can then use the Cisco power calculator, which allows us to input all of the
specifications of the equipment and find out what the power needs are along with the
amount of heat the equipment will generate.



Designing a Next Generation Network

[ 210 ]

For the power calculator, we will assume we are using two routers without redundant
supervisor modules. We will put in 36 100G ports and 48 1/10G ports. We could use a single
card, but it is best to have the uplink and downlinks on separate cards to avoid a complete
outage.

When you connect to the power calculator, you are asked what product family you will be
working with. We are going to focus on the Cisco Nexus 9500:



Designing a Next Generation Network

[ 211 ]

We will be designing a simple box with one supervisor revision, two system controllers,
three fans, and three fabric modules. This is an orderable bundle called N9K-C9504-B1
(Nexus 9504 Chassis Bundle with 1 Sup, 3 AC PS, 2 SC, 3 Fan Trays, and 3 Fabric Modules).
We add in two line cards, one 36x40G, and one 64x10G.

When we run the power calculator with the two line cards we get an output:

The power consumption of the system will be 8.14 Amps at 240V while generating 7850
BTU/hr of heat. A British Thermal Unit (BTU) is essentially the amount of heat necessary
to raise one pound of water by one degree Fahrenheit. The chart also suggests other power
units that can be used and the load that will be put on them. Using 60 percent of the
available power is acceptable. You should never exceed 80 percent.

This data should be lower than the data in the RFI as the RFI should include worst-case
numbers. If the RFI is lower, then it is important to confirm that the equipment is the same.

Some things that can throw off power calculations for chassis-based systems are as follows:

The number of line cards inserted
The type of line card used
The number of supervisor/fabric cards
The types of supervisor/fabric card used

With the Cisco 9500 series, you have multiple fabric cards that you can utilize. There is the
standard card, the E Cloud Scale card supporting 100G and an S fabric that only supports
one card, the 32 port 100G, (N9K-X9432C-S) line card, at this time.



Designing a Next Generation Network

[ 212 ]

If we redo the calculation with 100G-capable line cards and the FM-E fabric cards (four are
required), we get a significantly higher number.

In all of the configurations, we are not using redundant supervisor engines.

Here you can see that we are using 10.6 Amps at 240V and have 10508 BTU/hr. We have
about the same number of ports available; it is just that now we have 100G instead of 40G.
Note that we are very close to the 80 percent power usage, so it is advisable to use the next
alternate power supply. It is possible to run the switch on two dedicated 15 Amp 240V
circuits. The heat load being 10k BTU/hr will need to be confirmed with the facilities team.



Designing a Next Generation Network

[ 213 ]

If we upgrade to an eight-slot Nexus 9508 and fully populate it, to be comparable to open
networking switches, you would need four 15 Amp 240V circuits as you will be drawing up
to 10,128 Watts or 31.72 Amps.

By looking at the power calculations, we can see how important it is to understand what
equipment you will be using and make sure that the proper power connections are
installed.

For the 40G ToR, the Cisco 9372PX uses a maximum of 537W, which is about 4 Amps at
120V. With redundant switches, you need at least 8 Amps, so a standard 15 Amps circuit
will be fine. The 100G ToR would be the 92160YC-X, which has 48 10/25G ports and six
uplink ports of which four are 100G-capable.

The cabling necessary for the design includes cross connects between the ToR and EoR, ToR
to ToR, and EoR to EoR. Assuming that the NGN is located in the same space as the existing
(or is in greenfield) equipment, we will use DACs. For interconnects between the switches,
we will use QSFP28+ cables (40/100G).

The equipment list will be straightforward, two 9504s and N ToR 9372PXs based on the 
number of pods we will have:

40G network:
2x N9K-C9504-B1
2x N9K-X9536PQ 36x40G line cards
2x N9K-X9564PX48 10G/1G and 4x 40G cards
2/4x Nexus 9372PX switches



Designing a Next Generation Network

[ 214 ]

100G network:
2x N9K-C9504-B3-E
2xN9K-X9732C-EX 32x100G line cards
2x N9K-X97160YC-EX 48 10G/1G and 4x 40/100G cards
2/4x Nexus 92160YC-X switches

Putting all this together allows you to get a quote and negotiate pricing. Smaller companies
are normally required to buy from a reseller rather than Cisco directly. Cisco has a lot of
tools available, mostly to compare with competitors. Here is what Cisco's tool shows for an
ACI deployment costs versus NSX. The savings come from the switches versus the NSX
overlay/underlay and in the cost of servers as NSX requires server hardware to provide
NSX Edge services:

For simplicity, we will use a single Nexus 9500, firewall, and load balancer. Here the design
is clear; the traffic, whether from the internet or intranet, enters the Cisco 9500 switch, and
goes through a firewall and load balancer to the Nexus 9300 switches. The firewall / load
balancer may be virtual representations made using ACI Endpoint Groups (EPGs).



Designing a Next Generation Network

[ 215 ]

This design is simple to understand and expand; the actual ACI implementation is more
complicated. The following is a representation of both the physical and virtual networks:

Here the black lines show the physical links including those to the three required APIC
controllers. The blue lines show the virtual path between EPGs.



Designing a Next Generation Network

[ 216 ]

Designing using open network hardware
For the open networking design, we will use the Edgecore OMP-256X chassis switches for
the spine and Edgecore AS5712 switches for the ToR. There is no power calculator, so the
calculation has to be done by hand. One interesting thing about the OMP-256X is that it can
be used in both OCP spec racks (21 inches) and standard racks (19 inches) by mounting the
system so that the line cards are vertical.

The OMP-256X can support up to 8 line cards with 32 100G ports for a total of 256 100G
ports when configured maximally. We will only use one 32x 100G card and one 48x 10G
card as is used in the Cisco-based design. It would also be possible to build the design using
1U systems, where there are two levels of spines—a Benes or Clos design. However, to
compare better, we will use a chassis-based system for the spine and a single Rack Unit
(RU) switch for the ToR.

One thing to note about the open networking chassis switches, including the Facebook
Backpack and 6-pack, is that each line card is its own switch and is configured in that way.
You can see how the slots are divided into 16x 100G sections; this is because the front 16
ports use half of the connections on the Broadcom Tomahawk chipset and the other half of
the connections go to the backplane, where they are used to connect to the other line cards.
Essentially, it's a two-stage Clos in a box.

The OMP-256X when fully configured uses a maximum of 7000W, which is the average
usage of a fully configured Cisco Nexus 9508 with 8 32x 100GbE line cards. This means that
we can reasonably assume that, in order to expand the OMP-256, we will need four 15A
240V circuits, the same as for the Nexus:

The Edgecore OMP-256X



Designing a Next Generation Network

[ 217 ]

The division of the cards is even clearer when you look at the Facebook Backpack, which is
four line cards supporting 32x 100GbE each. The design is essentially 8 Wedge 100 switches
(16 ports front, 16 ports to the fabric) together in a single chassis:

Here the slots on the left are color-coded silver, while the ones on the right are color-coded
black. This is essentially 8 16x 100GbE switches in a single chassis. There are also another
four fabric cards, which are essentially 32x 100GbE Wedge switches. Since they are using
half of the connections from each line card, there are a total of 12 Wedge 100s in the chassis
as each line card is equal to two Wedge 100.

An interesting note about the Backpack is that, when Facebook connects cables to the box,
they put the longest ones in the middle as the middle has the shortest electrical trace from
the port to the Tomahawk chipset and therefore the least interference.



Designing a Next Generation Network

[ 218 ]

For the ToR 40G switch, we will use the Edgecore AS5712-54x, which provides 48 10G and 6
40G ports. For a 100G solution, we would use the AS7312-54x, which provides 48 10/25G
ports and 6 100G ports.

The preceding image shows the Edgecore AS5712-54X, one of the most deployed open
networking switches in the World. The AS5712 is supported by software from multiple
companies including Big Switch Networks (ONL, BMF, and BCF), Broadcom (ICOS),
Cumulus Networks, and Pica8.

The AS5712 uses a maximum of 282 watts, which is about 2.5 Amps at 120V. Thus, you can
have two switches on a normal 15 Amp 120V circuit.

The AS7312-54x uses a maximum of 350 watts, which is about 3 Amps at 120V. So you can
operate two switches easily on a 15 Amp 120V circuit.



Designing a Next Generation Network

[ 219 ]

The 100GbE AS7712-32x, as shown, uses 310 watts without optics or a maximum of 550
watts with optics. The 40GbE AS6712-32x uses 227 watts under the following conditions as
represented on the Edgecore website:

Energy Efficiency: 227 W typical power consumption under line rate traffic using 24 x passive
QSFP DAC, 8 x 40GBASE-SR4.

The following is the equipment we will need to order to build the network:

40G network:
2x AS6712-32x
2/4x AS5712-54x

100G network:
2x AS7712-32x
2/4x AS7312-54x (or the AS7712-32x with breakout cables)

The design looks familiar if we use OpenFlow controllers to manage the switches:



Designing a Next Generation Network

[ 220 ]

We can easily overlay the network with solutions from VMware such as NSX, or just use
OpenFlow to manage all of the traffic by integrating with an OpenFlow controller such as
ONOS or Floodlight.

Assembling the network
Let's see a few standard design points before we explore into the setup in depth.

Now that we know the power/cooling needs of the solution we have decided on, we can
provide the data to the facilities manager and start assembling the necessary hardware,
preparing the space, and ordering the accessories.

One thing that is important when planning the design is remote manageability. Some key
pieces to have in the racks are remote management capabilities including power cyclers,
console capabilities, and a secure management network.

For each rack, you will want at least two separate power circuits coming from separate
panels, which will be used to feed any equipment with multiple power supplies. It is also
key to log all of this data for future reference in the event that something happens.

Burning in the equipment is also important, so plan for at least a week of running the
equipment before using it in production.

Putting the parts in place
When the equipment is delivered, the equipment needs to be unpacked and checked
thoroughly, documented, and assembled. Depending on the direction the design has gone,
you may be assembling an underlay network with a software overlay to manage the traffic
like NSX, a standard network with built in traffic management (ACI), or an OpenFlow
managed network.

No matter what your solution, you will still need the same parts, switches/routers, cables,
and optics. For an ACI network, you will need 3-5 APIC controllers, for OpenFlow you will
need two, and for NSX you will require CPU/memory/disk on each of the VMware NSX
hosts. Each solution will generally contain the same number of switches and routers.

At this time, it is useful to label all of the cables that will be running between devices. If you
are using SFPs with fiber, label the fiber with the local and remote ports. If you are using
DACs, label the DACs the same way. Labeling the actual SFPs will not help when
debugging.



Designing a Next Generation Network

[ 221 ]

If you plan to use any tools such as Puppet, Ansible, or Apstra, you will need the following
information:

Networking device MAC
Serial number
Type and use (ToR, spine)
Which cables connect from the device to other devices and on which ports

If all of the devices are on an out-of-band network, you should be able to run most tools
using this information.

Migrating to the new network
Migration from one location to another, or from an older pod design to a newer one, seems
pretty simple—cut over the traffic and move on. In reality, it takes planning, extra
configurations, and cooperation between all of the equipment owners/managers.

Stage one is to assemble the new network; whether in the same building or on the other side
of the World, the new devices need to be accessible so that certain tasks can be completed.



Designing a Next Generation Network

[ 222 ]

In the preceding design, we see that we have similar designs on both sides. On the left-hand
side, you have these:

A routing device, possibly a Cisco GSR 12810, CRS 4-slot chassis, or even Cisco
Catalyst 4500
A firewall, possibly also from Cisco, Palo Alto Networks, or any other firewall
vendor
A load balancer, necessary to balance the traffic between multiple servers and the
server hardware itself

On the right-hand side, we have positioned the Nexus 9000 series switches in both the edge
router space and as the ToR. The rest of the devices will be updated, but possibly from the
same manufacturer. We can also see that all of the traffic is flowing to the network pod on
the left, the legacy pod.

In the preceding diagram, we see a few things. Most importantly, there is a secure
connection between the database servers, allowing data to be transferred between the two
pods or sites. Second, the traffic is now flowing to the new pod/site, but is then redirected
back to the old site. This allows for a slow migration from the old hardware to the new
hardware.



Designing a Next Generation Network

[ 223 ]

While you are transferring data, you can start sending some traffic to the new pod to make
sure that everything is working as expected. Important things to monitor are as follows:

How evenly the traffic is split
Whether the firewall is providing the expected protection and logging
If the servers are handling the traffic correctly where the latency is the same as, or
better than, the old pod/site

In this final diagram, we can see how all of the traffic has been migrated and the old
pod/site has been shut down.

Summary
In this chapter, you determined the size and type of installation the equipment will be going
in to. You also designed the network hardware layout based on the RFI/RFQ information
and finally understood how to assemble a final list of equipment to construct the NGN.

In the next chapter, we will look at specific examples of different NGN designs including
OpenFlow, SnapRoute, and ACI.



11
Example NGN Designs

In the previous chapter, we discussed how to design a network based on the information
received from your RFI/RFQ and Proof of Concept (PoC).

In this chapter, we will look at different NGN designs that are utilized by both service
providers and enterprise networks. We will discuss large network designs along with
smaller network designs for both enterprise and service providers.

At the end of this chapter, you should be able to understand different types of design,
including the following:

Open hardware with OpenFlow and OpenDaylight
Open Hardware with SnapRoute managed via REST
Cisco Nexus 9000 with ACI
Open or proprietary hardware with VMware NSX

Designs used in this chapter
In this chapter, we will use two different designs. Most designs use either a Benes or Clos
leaf-spine design. For comparison, we will use the core-aggregation design.



Example NGN Designs

[ 225 ]

Leaf-spine design
As we discussed in earlier chapters, a leaf-spine design is the most common multi-rack PoD
design. This design will be central to most of the different examples we will give.

Core-aggregation design
In a core-aggregation design, multiple switches are connected to each other, necessitating
using the spanning tree protocol or other methods to prevent network loops from forming.
A network loop is where multiple switches send the same packets out of all their interfaces.
Loops can cause broadcast storms, where devices send a massive amount of packets and
receive multiple duplicate packets; this can take down the entire network.



Example NGN Designs

[ 226 ]

Using open hardware and software
In this section, we will talk about reference designs for a network using open hardware and
software. We will cover both an active and controlled network, such as the one managed by
OpenFlow, and a static one, such as the one that uses standard routing protocols with a
software overlay.

OpenFlow designs
For the first OpenFlow design, we will use a standard leaf-spine with an OpenDaylight
OpenFlow controller connected to it. The switches will be running Broadcom's OF-DPA
with the Indigo OpenFlow agent.



Example NGN Designs

[ 227 ]

For the spine, we will use Accton/Edgecore AS6812-32x, a 32 port 40 GbE switch. For the
leaf, we will use AS5812-54x a 48x10 GbE, plus 6x40 GbE. We will build a 4-rack pod:

As shown in the following diagram, the OpenDaylight OpenFlow controller connects to the
switches via the management network. By utilizing the management (out-of-band) network,
changes in the public (in-band) network will not impact the ability of the controller to
program the switches. This is the key to having a stable network.



Example NGN Designs

[ 228 ]

The out-of-band network is important for this setup as it provides a more secure channel to
send commands to the switches. It also helps in setting up the switches as most switches do
not have functional in-band ports on boot; they are available only after the configuration is
set up or, in the case of open networking, once the SDK is initialized.

Once the initial build is done, all the switches are cabled, powered on, and have a Network
Operating System (NOS) on them; OF-DPA plus Indigo should be installed. Refer to the 
following code:

root@switch:~# dpkg -i ofdpa_3.0.3.1+accton1.4-1-1_amd64.deb
(Reading database ... 15663 files and directories currently installed.)
Preparing to unpack ofdpa_3.0.3.1+accton1.4-1-1_amd64.deb ...
Unpacking ofdpa (3.0.3.1+accton1.4~1-1) ...
Setting up ofdpa (3.0.3.1+accton1.4~1-1) ...

This is a sample output from installing OF-DPA on Accton AS5712-54x; the version is
specifically from Accton (the parent company of Edgecore) to run on their switches. Now
refer to this code:

root@switch:~# /usr/sbin/brcm-indigo-ofdpa-ofagent --usage
05-29 20:59:49.856338 [ofagent] version 2.0.4.0 -- Built on Fri May 27 2016
at 09:10:39 UTC
Usage: brcm-indigo-ofdpa-ofagent [-?V] [-a AGENTDEBUGLVL] [-i DATAPATHID]
[-l IP:PORT] [-t IP:PORT] [--agentdebuglvl=AGENTDEBUGLVL]
[--dpid=DATAPATHID] [--listen=IP:PORT] [--controller=IP:PORT]
[--help] [--usage] [--version]

Here, we are running the Indigo agent with the --usage command, which gives us a short
message about how to use it. The main information we need to know is how to connect the
agent to the server. We will need to use the --controller=IP:PORT option to tell the
agent the IP and port of the server. The port used before 2013 is 6633; the official port has
been 6653 since 2013. Your application may use either.



Example NGN Designs

[ 229 ]

Once installed, Indigo can be connected to OpenDaylight by putting in the IP address and
port of the OpenDaylight controller.

Initially, the OpenDaylight controller will show nothing in the topology. Once we connect
the first switch, we will see it and a few hosts connected to the switch. Check out this
example:

root@switch:~# /usr/sbin/brcm-indigo-ofdpa-ofagent --
controller=10.1.10.146:6653 -i 0x0000000000000273
06-02 18:53:40.938568 [ofagent] version 2.0.4.0 -- Built on Fri May 27 2016
at 09:10:39 UTC
OF Datapath ID: 0x0000000000000273
Initializing the system.
06-02 18:53:40.939101 [socketmanager] Initializing socket manager
06-02 18:53:40.940955 [ofagent] Adding controller 10.1.10.146:6653
06-02 18:53:40.941023 [ofconnectionmanager] Added remote connection:
10.1.10.146:6653
06-02 18:53:42.117282 [ofconnectionmanager] cxn 10.1.10.146:6653:
DISCONNECTED->CONNECTING
06-02 18:53:42.142504 [ofconnectionmanager] cxn 10.1.10.146:6653:
CONNECTING->HANDSHAKE_COMPLETE
06-02 18:53:42.240867 [ofconnectionmanager] Upgrading cxn 10.1.10.146:6653
to master

In the preceding exchange, the switch initially contacts the controller stating its data path ID
of 273, then the controller connects to the switch and is promoted to the master. There are
three hosts that are connected to the switch at connection time, as shown in the following
GUI:



Example NGN Designs

[ 230 ]

Our next goal will be to connect a fourth host to the OpenDaylight server. This allows us to
confirm that the software is configured correctly and connectivity between the switches is
functional.



Example NGN Designs

[ 231 ]

Now a second switch can be added with two hosts connected. The second switch is linked
to the first switch to create a leaf/leaf ToR network. While we are only using two, larger
configurations of hundreds of switches are supported by OpenDaylight.

For forwarding, we will use the L2Switch application, which will allow different hosts to
see each other as if they were connected to the same switch in the same broadcast domain.

An example would be where users of Internet2 (the educational only network) use
OpenDaylight to configure connections between different universities that match their
expected use.



Example NGN Designs

[ 232 ]

Open hardware with SnapRoute
For the SnapRoute design, we will use two switches connected to each other running Open
Network Linux (ONL) and SnapRoute's forwarding agent. The design will still be leaf-
spine, but we will be running BGP between the switches:

In the preceding diagram, links between Leaf 1 and Spine 1 and Leaf 1 and Spine 2 are
given IP addresses corresponding to the configuration that will be applied.

Confirm that the FlexSwitch software is running using the system shell:

# service flexswitch status
[ ok ] FlexSwitch is running.

The next screenshot illustrates an example of using SnapRoute's RESTful API via Postman.
We make a call to the API requesting the SystemStatus and receive data on how long the
system has been running and what processes are running, such as ribd (Routing
Information Base (RIB) daemon) and dhcprelayd (DHCP relay daemon).



Example NGN Designs

[ 233 ]

As covered earlier in the book, RIB is a copy of all of the network information, whether it is
used for forwarding, that is, put into Forwarding Information Base (FIB) or used for other
functions such as to calculate the best paths to destinations.

In the following example, we will do the same query for system status using curl and the
python json.tool to pretty up the output. In this example, we can see that the vxland or
VXLAN daemon is running and has received 10 keepalive messages:

$ curl -X GET --header 'Content-Type: application/json' --header 'Accept:
application/json' http://10.1.1.1:8080/public/v1/state/SystemStatus |
python -m json.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 3976 0 3976 0 0 260k 0 --:--:-- --:--:-- --:--:-- 277k
{
 "Object": {



Example NGN Designs

[ 234 ]

 "FlexDaemons": [
 {
 "Enable": true,
 "KeepAlive": "Received 10 keepalives",
 "Name": "vxland",
 "Reason": "None",
 "RestartCount": 0,
 "RestartReason": "",
 "RestartTime": "",
 "StartTime": "2017-01-01 21:09:02.556083271 +0000 UTC",
 "State": "up"
 }

Configuring BGP
We will be configuring BGP between Leaf 1, Spine 1, and Spine 2. The management IP 
addresses of the switches are as follows:

Leaf 1: 10.1.1.1
Spine 1: 10.1.1.2
Spine 2: 10.1.1.3

To configure BGP, we need to first set the global settings; this will need to be done on all
devices that run BGP. If you do not set the global settings, you will be unable to start BGP
sessions as they will not have the necessary information, such as the local Autonomous
System Number (ASN) or router ID.

curl -X PATCH --header 'Content-Type: application/json' --header 'Accept:
application/json' -d
'{"ASNum":"15096","RouterId":"192.168.1.1","IBGPMaxPaths":32}'
'http://10.1.1.1:8080/public/v1/config/BGPGlobal'
{"Access-Control-Allow-Origin":"*","Access-Control-Allow-Headers":"Origin,
X-Requested-With, Content-Type, Accept","Access-Control-Allow-
Methods":"POST, GET, OPTIONS, PATCH, DELETE","Access-Control-
Max_age":"86400","ObjectId":"f0c03caf-ec3b-4307-5f36-
e12b2a09b328","Result":"Success"}

As we do this command for each switch, the only change will be the router ID of the BGP
configuration. For example, for Leaf 1, the router ID is 192.168.1.1, while Spine 1 has a
router ID of 192.168.1.2.



Example NGN Designs

[ 235 ]

When we query BGPGlobal on the REST interface, it will tell us the current global BGP
configuration of the switch:

curl -X GET http://10.1.1.1:8080/public/v1/state/BGPGlobal | python -m
json.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 238 100 238 0 0 145k 0 --:--:-- --:--:-- --:--:-- 232k
{
 "Object": {
 "AS": "15096",
 "Disabled": false,
 "EBGPAllowMultipleAS": false,
 "EBGPMaxPaths": 0,
 "IBGPMaxPaths": 32,
 "RouterId": "192.168.1.1",
 "TotalPaths": 0,
 "Totalv4Prefixes": 0,
 "Totalv6Prefixes": 0,
 "UseMultiplePaths": false,
 "Vrf": "default"
 },
 "ObjectId": ""
}

While there are many extra options for BGP, we have left most of them in the default state.

Building the network

There are a few necessary items you need to know to add a new BGP neighbor. You need to
know the remote AS and the neighbors IP:

curl -X POST --header 'Content-Type: application/json' --header 'Accept:
application/json' -d '{"PeerAS":"15096","NeighborAddress":"192.168.10.2"}'
'http://10.1.1.2:8080/public/v1/config/bgpv4neighbor'

Here we are using a REST call to query the neighbors configured on the switch:

curl -X GET --header 'Content-Type: application/json' --header 'Accept:
application/json' 'http://10.1.1.2:8080/public/v1/state/bgpv4neighbors' |
python -m json.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 887 100 887 0 0 348k 0 --:--:-- --:--:-- --:--:-- 433k



Example NGN Designs

[ 236 ]

{
 "CurrentMarker": 0,
 "MoreExist": false,
 "NextMarker": 0,
 "ObjCount": 1,
 "Objects": [
 {
 "Object": {
 "AddPathsMaxTx": 0,
 "AddPathsRx": false,
 "AdjRIBInFilter": "",
 "AdjRIBOutFilter": "",
 "AuthPassword": "",
 "BfdNeighborState": "",
 "ConnectRetryTime": 120,
 "Description": "",
 "Disabled": false,
 "HoldTime": 180,
 "IntfRef": "",
 "KeepaliveTime": 60,
 "LocalAS": "15096",
 "MaxPrefixes": 0,
 "MaxPrefixesDisconnect": false,
 "MaxPrefixesRestartTimer": 0,
 "MaxPrefixesThresholdPct": 80,
 "Messages": {
 "Received": {
 "Notification": 0,
 "Update": 0
 },
 "Sent": {
 "Notification": 0,
 "Update": 0
 }
 },
 "MultiHopEnable": false,
 "MultiHopTTL": 0,
 "NeighborAddress": "192.168.10.2",
 "NextHopSelf": false,
 "PeerAS": "15096",
 "PeerGroup": "",
 "PeerType": 1,
 "Queues": {
 "Input": 0,
 "Output": 0
 },
 "RouteReflectorClient": false,
 "RouteReflectorClusterId": 0,



Example NGN Designs

[ 237 ]

 "SessionState": 3,
 "SessionStateDuration": "51.110675572s",
 "TotalPrefixes": 0,
 "UpdateSource": ""
 },
 "ObjectId": "b6920d65-385e-4819-7631-30b9fce97dd0"
 }
 ]
}

As you can see, there is a lot of information provided in the REST calls, including the
number of peers, the number of prefixes, the time that the session has been up, and the
maximum number of prefixes accepted from the session.

Moving forward, here is what the entire leaf configuration looks like when using curl:

curl -X PATCH -H "Content-Type: application/json" -d '{"IntfRef":
"fpPort1", "AdminState":"UP", "Speed":40000, "Autoneg":"OFF"}'
http://10.1.1.1:8080/public/v1/config/Port
curl -X PATCH -H "Content-Type: application/json" -d '{"IntfRef":
"fpPort2", "AdminState":"UP", "Speed":10000, "Autoneg":"OFF"}'
http://10.1.1.1:8080/public/v1/config/Port
curl -H "Content-Type: application/json" -d '{"IpAddr": "192.168.10.2/24",
"IntfRef":"fpPort1"}' http://10.1.1.1:8080/public/v1/config/IPv4Intf
curl -H "Content-Type: application/json" -d '{"IpAddr": "192.168.20.2/24",
"IntfRef":"fpPort2"}' http://10.1.1.1:8080/public/v1/config/IPv4Intf
curl -X PATCH --header 'Content-Type: application/json' --header 'Accept:
application/json' -d
'{"ASNum":"15096","RouterId":"192.168.1.1","IBGPMaxPaths":32}'
'http://10.1.1.1:8080/public/v1/config/BGPGlobal'
curl -H "Content-Type: application/json" -d '{"Name":"MatchConnected",
"ConditionType":"MatchProtocol", "Protocol":"CONNECTED"}'
http://10.1.1.1:8080/public/v1/config/PolicyCondition
curl -H "Content-Type: application/json" -d
'{"Name":"RedistributeConnectedBGP", "MatchConditions":"all",
"Conditions":["MatchConnected"], "Action":"permit"}'
http://10.1.1.1:8080/public/v1/config/PolicyStmt
curl -H "Content-Type: application/json" -d '{"Name":"ImportPolicy",
"Priority":1, "MatchType":"all",
"StatementList":[{"Priority":1,"Statement":"RedistributeConnectedBGP"}]}'
http://10.1.1.1:8080/public/v1/config/PolicyDefinition
curl -H "Content-Type: application/json" -d '{"ASNum":"15096",
"Redistribution":[{"Sources":"CONNECTED","Policy":"ImportPolicy"}]}' -X
PATCH http://10.1.1.1:8080/public/v1/config/bgpglobal
curl -H "Content-Type: application/json" -d
'{"NeighborAddress":"192.168.10.1", "IntfRef":"", "PeerAS":"15096",
"LocalAS":"15096", "ConnectRetryTime":30, "HoldTime":3, "KeepaliveTime":1}'



Example NGN Designs

[ 238 ]

-X POST http://10.1.1.1:8080/public/v1/config/bgpv4neighbor
curl -H "Content-Type: application/json" -d
'{"NeighborAddress":"192.168.20.1", "IntfRef":"", "PeerAS":"15096",
"LocalAS":"15096", "ConnectRetryTime":30, "HoldTime":3, "KeepaliveTime":1}'
-X POST http://10.1.1.1:8080/public/v1/config/bgpv4neighbor

The configuration from Spine 1 is shown in the following code. It is similar to the leaf
configuration other than having a different router ID. Spine 1 is connected to Leaf 1:

curl -X PATCH -H "Content-Type: application/json" -d '{"IntfRef":
"fpPort1", "AdminState":"UP", "Speed":40000, "Autoneg":"OFF"}'
http://10.1.1.2:8080/public/v1/config/Port
curl -H "Content-Type: application/json" -d '{"IpAddr": "192.168.10.1/24",
"IntfRef":"fpPort1"}' http://10.1.1.2:8080/public/v1/config/IPv4Intf
curl -X PATCH --header 'Content-Type: application/json' --header 'Accept:
application/json' -d
'{"ASNum":"15096","RouterId":"192.168.1.2","IBGPMaxPaths":32}'
'http://10.1.1.2:8080/public/v1/config/BGPGlobal'
curl -H "Content-Type: application/json" -d
'{"NeighborAddress":"192.168.10.2", "IntfRef":"", "PeerAS":"15096",
"LocalAS":"15096", "ConnectRetryTime":30, "HoldTime":3, "KeepaliveTime":1}'
-X POST http://10.1.1.2:8080/public/v1/config/bgpv4neighbor

The second spine, Spine 2, is configured in a similar way as the other switches, with one
connection to Leaf 1:

curl -X PATCH -H "Content-Type: application/json" -d '{"IntfRef":
"fpPort1", "AdminState":"UP", "Speed":40000, "Autoneg":"OFF"}'
http://10.1.1.3:8080/public/v1/config/Port
curl -H "Content-Type: application/json" -d '{"IpAddr": "192.168.20.1/24",
"IntfRef":"fpPort1"}' http://10.1.1.3:8080/public/v1/config/IPv4Intf
curl -X PATCH --header 'Content-Type: application/json' --header 'Accept:
application/json' -d
'{"ASNum":"15096","RouterId":"192.168.1.3","IBGPMaxPaths":32}'
'http://10.1.1.3:8080/public/v1/config/BGPGlobal'
curl -H "Content-Type: application/json" -d
'{"NeighborAddress":"192.168.20.2", "IntfRef":"", "PeerAS":"15096",
"LocalAS":"15096", "ConnectRetryTime":30, "HoldTime":3, "KeepaliveTime":1}'
-X POST http://10.1.1.3:8080/public/v1/config/bgpv4neighbor

At this point, Leaf 1 is peered with both Spine 1 and Spine 2, and the forwarding
information is being distributed.



Example NGN Designs

[ 239 ]

Here is what the BGP sessions on Leaf 1 look like:

curl -X GET --header 'Content-Type: application/json' --header 'Accept:
application/json' http://10.1.1.1.1:8080/public/v1/state/bgpv4neighbors |
python -m json.tool
 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
100 1707 100 1707 0 0 158k 0 --:--:-- --:--:-- --:--:-- 166k
{
 "CurrentMarker": 0,
 "MoreExist": false,
 "NextMarker": 0,
 "ObjCount": 2,
 "Objects": [
 {
 "Object": {
...
 "Disabled": false,
 "HoldTime": 3,
 "IntfRef": "",
 "KeepaliveTime": 1,
 "LocalAS": "15096",
 "MaxPrefixes": 0,
 "MaxPrefixesDisconnect": false,
 "MaxPrefixesRestartTimer": 0,
 "MaxPrefixesThresholdPct": 80,
 "Messages": {
 "Received": {
 "Notification": 0,
 "Update": 0
 },
 "Sent": {
 "Notification": 0,
 "Update": 0
 }
 },
 "MultiHopEnable": false,
 "MultiHopTTL": 0,
 "NeighborAddress": "192.168.10.2",
 "NextHopSelf": false,
 "PeerAS": "15096",
 "PeerGroup": "",
 "PeerType": 0,
 "Queues": {
 "Input": 0,
 "Output": 0
 },
 "RouteReflectorClient": false,



Example NGN Designs

[ 240 ]

 "RouteReflectorClusterId": 0,
 "SessionState": 6,
 "SessionStateDuration": "17h32m12.129971568s",
 "TotalPrefixes": 0,
 "UpdateSource": ""
 },
 "ObjectId": "1c4ab72c-6914-43b3-63c3-292b7401306c"
 },
 {
 "Object": {
...
 "LocalAS": "15096",
 "MaxPrefixes": 0,
 "MaxPrefixesDisconnect": false,
 "MaxPrefixesRestartTimer": 0,
 "MaxPrefixesThresholdPct": 80,
 "Messages": {
 "Received": {
 "Notification": 11,
 "Update": 0
 },
 "Sent": {
 "Notification": 11,
 "Update": 0
 }
 },
 "MultiHopEnable": false,
 "MultiHopTTL": 0,
 "NeighborAddress": "192.168.20.2",
 "NextHopSelf": false,
 "PeerAS": "15096",
 "PeerGroup": "",
 "PeerType": 0,
 "Queues": {
 "Input": 0,
 "Output": 0
 },
 "RouteReflectorClient": false,
 "RouteReflectorClusterId": 0,
 "SessionState": 3,
 "SessionStateDuration": "22.845098904s",
 "TotalPrefixes": 0,
 "UpdateSource": ""
 },
 "ObjectId": "b5d9423e-151c-4f4a-63d2-ee6242cbfebc"
 }
 ]
}



Example NGN Designs

[ 241 ]

Here is the BGP routing state data pulled using Postman. The output shown in the
screenshot is almost exactly the same as when we use curl and the Python json.tool to
make it readable:

The following code is a confirmation that an external BGP route is showing in the
FlexSwitch routing table on the newly configured port (fpPort3), and it is shown as using
EBGP due to having a different ASN:

 {
 "Object": {
 "DestinationNw": "172.31.1.0/24",
 "IsNetworkReachable": true,
 "NextBestRoute": {
 "NextHopList": null,
 "Protocol": ""
 },
 "NextHopList": [
 {
 "NextHopIntRef": "fpPort3",
 "NextHopIp": "192.168.30.2",
 "Weight": 0
 }
 ],
 "PolicyList": [],
 "Protocol": "EBGP",
 "RouteCreatedTime": "2017-06-12 18:28:27.665878155 +0000 UTC",
 "RouteUpdatedTime": ""
 },
 "ObjectId": ""
 },



Example NGN Designs

[ 242 ]

Cisco ACI
The Cisco ACI design will also be based on a leaf-spine design. One important thing to note
is that APIC keeps a log of all changes to allow reversing if necessary.

As discussed in chapter 8, Cisco ACI, a production ACI network requires three or five
APIC servers, no matter how small the deployment is. In the examples from this chapter,
we saw that the APIC controller will inform you that you do not have enough APICs to
deploy to production. For this design, we use a similar design to the OpenDaylight one, but
with three APIC servers.

For this design, we will put together a normal leaf-spine topology and wire the switches
together and to the controller via the management network.



Example NGN Designs

[ 243 ]

On first boot, we will run a fabric discovery to find all the switches. Once the switches have
been located, we will configure the management network as shown in the preceding
diagram. We then need to go into the APIC management tenant and configure static names
for each of the devices.

The last and most important step is to configure NTP so that all the switches and controllers
are synchronized, since we have three or five controllers, where you need a quorum for a
configuration to be applied; they all need to be in the same time zone with the same time.

Design basics
For the design, we have to answer a few questions. Please review Chapter 8, Cisco ACI, for
specifics on how to configure different items.

The first question is, Who/what from the outside of the ACI fabric needs to connect to
devices behind the ACI fabric? If this question is answered, the rest of the configuration will
be straightforward. Remember that, even within the same network, many users will be
outside the ACI fabric.

We need to do two steps:

First, we need to set up the virtual environment that will define all the VMs and1.
associate them with End Point Groups (EPGs).
Second, we need to add the EPGs to Attachable Entry Points (AEPs) on the 2.
physical side to group all the EPGs that need to communicate together.

Let's look into a sample customer:

You have an end user who needs access to a web-based billing application that resides
behind the ACI fabric.



Example NGN Designs

[ 244 ]

In order to provide connectivity, you will need to have an ANP for the billing application
and an EPG for the web connectivity to the application. You will also need to create an EPG
for the end users. The application EPG will be assigned to a provider contract that is created
so that the billing application is reachable. The provider contract will allow the fabric to
create the connection between the application and the end users. Refer to the following
screenshot:

Here you can see the resulting VLAN created by the APIC when traffic needs to get to and
from a server behind the ACI network. Refer to Chapter 8, Cisco ACI, where we talked
about Cisco ACI to find information about the configuration.



Example NGN Designs

[ 245 ]

Open or proprietary network with NSX
For the NSX design, we can use a combination of proprietary and open networking
hardware or just one or the other.

For the design, we will use a core-aggregation design with compute racks and NSX Edge
racks.

As we can see, traffic goes from Compute Rack 1 to the NSX Edge and then out to the
external network.



Example NGN Designs

[ 246 ]

In Chapter 7, VMware NSX, you learned about configuring NSX. There was also a view of
the network from the NSX overlay. Here is the same diagram for the preceding design:

Notice that the Distributed Virtual Switch (DvSwitch) actually represents both the edge
and core switches from the preceding design. The traffic flows from the VM through the
DVS and is put into a VXLAN that is shipped to the NSX Edge and then out to the router
and to the external network.

Summary
In this chapter, we talked about designs using OpenFlow, SnapRoute, Cisco ACI, and NSX
to design and build networks. We referred back to earlier chapters, examining each one of
them to see how to set up a deep configuration.

In the next chapter, we will talk about understanding and configuring Quality of Service
(QoS).



12
Understanding and Configuring

Quality of Service
In the previous chapter, we looked at basic designs using OpenFlow, ACI, SnapRoute, and
NSX. In this chapter, we will cover Quality of Service (QoS), which is an important part of
any network. QoS is no longer an extra; it's a key part of networking, in both enterprise and
service provider networks.

By the end of this chapter, you will:

Understand what QoS is, both in layer 2 and layer 3 applications
Understand how QoS is deployed and configured
Know how to configure QoS using open source controllers
Know how to configure QoS using NSX

QoS
QoS is the concept of providing different levels of service to selected traffic. With this,
information is provided to devices to determine how to handle traffic crossing the devices
when it is greater than the resources available. These resources can be bandwidth, access
lists, processing, and other resources.

It's important to recognize that, while your traffic may not appear to exceed your link,
micro-bursts of traffic can cause hard-to-trace issues. It is always advisable, even with QoS
and other traffic management tools, to keep a link below 80 percent utilization.



Understanding and Configuring Quality of Service

[ 248 ]

QoS has two main ways in which it can manage traffic—either prioritizing specific flow(s)
or limiting all other flows. On a standard device, QoS allows you to differentiate services
based on any matchable packet header information, for example, source or destination
address. Some devices that do deep packet inspection can match almost anything in the
packet.

When applying QoS to a link, there are multiple ways to handle traffic that exceeds the
limits set on the network, including tail drop, Weighted Round Robin (WRR), Random
Early Detection (RED), and Weighted Random Early Detection (WRED). All these queue 
management algorithms do the same thing—remove or reject packets from the queue.
These are described next:

Tail drop: This is the simplest way to manage traffic issues. With tail drop, when
a queue or memory space is exhausted, the packets are dropped as they attempt
to join the queue either on the input side or in the fabric.
WRR: This algorithm was originally designed for ATM links where the packets
are always the same size. When used with links that have random packet sizes,
an average packet size must be calculated and then applied. WRR is not seen
much in networks today and has been replaced by Weighted Fair Queuing
(WFQ).
RED: Also known as Random Early Discard/Drop, this is a fairer queue
management algorithm than tail drop. RED works by monitoring the output
queue on the link and as the queue gets full, it starts to randomly drop packets
attempting to join the queue; if the queue gets completely full, then all the
packets are dropped. The main issue with basic RED is that it does not account
for QoS priorities.
WRED: This algorithm is a variation on RED. It allows queues to have multiple
thresholds for packets based on the traffic class (ToS, CoS, or DSCP). As packets
come in, if the average queue size is lower than the minimum threshold, packets
are queued. As the queue gets full, lower-priority packets are dropped before
higher-priority ones. Refer to the following diagram:



Understanding and Configuring Quality of Service

[ 249 ]

WRED example with three different types of packet

In this figure, you can see a few QoS technologies in use. First, there are three
packets coming in—blue, green, and red. As the blue packet goes through, WRED
is not applied, so the blue packet is passed on to the output queue; as the queue is
not full, the packet is sent to the output queue.

When the green packet comes through, WRED is applied, but because the queue is
higher than the average, the green packet is discarded.

When the red packet comes through, the queue is lower than the average, so the
packet is sent to the queue; however, the queue is full, so the red packet is
discarded.

If we add classification, that is, reading ToS/DSCP from the packets, we get
something similar:

WRED with packet classification based on DSCP.



Understanding and Configuring Quality of Service

[ 250 ]

In the preceding diagram, three types of packet are coming in, each with a
different DSCP value: blue being priority, green being important, and red falling
in the general queue. The blue and green packets get through without any issue,
but because Other Queue is full, the red packet is dropped.

Network behavior without QoS
Without QoS, traffic will normally be either dropped from the head or the tail of the queue
while waiting to pass across a link. When traffic is stuck at the head of the queue, it is called
Head-of-Line Blocking (HoLB), which is one of the worst ways to manage traffic. Some 
networking equipment, such as the DEC FDDI GIGAswitch, had no way to prioritize traffic
and therefore dropped traffic at the end of the queue when the queue was filled. Dropping
traffic at the head of the queue is better in a HOLB type of a situation. Refer to the following
diagram:

HoLB in a network with no QoS

This figure shows that, when multiple red packets come in, they stop the green and blue
packets from being transmitted. Once all the red packets are sent, the other packets can be
sent too. This is called HoLB.



Understanding and Configuring Quality of Service

[ 251 ]

HoLB and tail dropping, as we just discussed, are the two standard ways in which
interfaces deal with congestion when no QoS policy is in place. In the preceding HoLB
diagram, there is space for the blue and green packets on the line, but they cannot be sent as
the red packets are being stopped.

Random drops are becoming more common-place. In some situations, such as bursting
traffic or one-time events, this may not be an issue. Also, in other situations, such as when a
site is under a denial of service attack, QoS may not help at all.

Generic traffic management
There are two different types of traffic management when using Ethernet, layer 2, and layer
3.

Layer 2 traffic management is designated as Class of Service (CoS) and used in 802.1Q, that
is, VLANs and trunking. CoS does not guarantee latency or packet delivery. The CoS
concept came out after 1995 along with VLANs.

Layer 3 traffic management was defined in RFC 791, the original Internet Protocol (IP) RFC
as ToS using a three-bit precedence field in the packet. Over time, it has been refined to 
include differentiated services and Explicit Congestion Notification (ECN).

Layer 2 – focused QoS functionality
In layer 2 VLANs, there are eight values that can be attached to an Ethernet packet; they
range from 0-7 and are defined by the Institute of Electrical and Electronics Engineers
(IEEE) in the 802.1Q standard. The names of each priority will be stated based on both
current naming conventions and their corresponding naming conventions from the RFC 791
(the original IP RFC) Type of Service section. Later, when we talk about DSCP, we will map
those values to the CoS values to give a full picture. The following list describes the
priorities:

CoS priority 0: This is the default priority and delivers best results; in RFC 791,
ToS priority 0 is stated Routine.
CoS priority 1: This is background traffic; in RFC 791 ToS, priority 1 is stated
Priority.
CoS priority 2: This implies excellent effort; in RFC 791 ToS, it is stated
Immediate. Priorities 0-2 are the lowest priority. All traffic in these first three CoS
priorities is the first to be dropped when a link is congested.



Understanding and Configuring Quality of Service

[ 252 ]

CoS priority 3: This is designated for critical applications and will be dropped
after the first three. For RFC 791, this is named Flash.
CoS priority 4: This is for video. RFC 791 states ToS priority 4 as Flash Override.
Both CoS level 4 and 5 require low latency and jitter.
CoS priority 5: This is for voice; in RFC 791, it is stated Critical.
CoS priority 6: This is Internetwork Control for both IEEEs (telnet and other
necessary communication tools).
CoS priority 7: This is for Network Control (layer 2 control protocol traffic).

CoS is only available on trunk ports, not access ports. The following chart shows the
CoS/ToS names:

CoS CoS name ToS name

0 Best Effort Routine

1 Background Immediate

2 Excellent Effort Immediate

3 Critical Applications Flash

4 Video Flash Override

5 Voice Critical

6 Internetwork Control Internetwork Control

7 Network Control Network Control

Layer 3 – focused QoS functionality
The first level of traffic management within the theme of QoS is the way TCP/IP handles
congestion via exponential back off. TCP maintains a window (or the number of packets)
that can be sent without an ACK (acknowledgment) from the other side. When a TCP flow
does not get an ACK message from the receiving host, this means that a packet was not
received by the other side or the ACK was lost on the way back. At this point, the sender will
send the packet again. If this happens more than once, the sender will slowly back off and
send data at a lower speed in order to try and stabilize the traffic.

Past having TCP/IP handle the congestion, the interface itself may handle the traffic in a
reasonable way, such as randomly dropping packets rather than dropping the front or tail
of the queue.



Understanding and Configuring Quality of Service

[ 253 ]

At one point in my networking life, I ran a large ATM-based nationwide network. While the
ports were 45 Mbps, the allocated virtual channels (PVCs) were only 3-5 Mbps. When too
much traffic was sent over the link, we would see normal congestion issues, such as higher
latency and packet loss. At one point, Cisco updated the software on the line cards to drop
packets instead of just queuing them. This caused a lot of issues as it was not immediately
discovered. The solution to the issue was to upgrade the links as there was no specific traffic
that we could prioritize.

QoS is implemented in different ways based on feature availability on the system that it is
being applied to. Most systems support a minimum of ToS, which as explained earlier is an
L2 packet attribute, and sets the priority in the packet header. ToS sets a field in the packet
that defines the priority of the packet. As networking technology has evolved, ToS has been
replaced by Differentiated Services (DiffServ). This sets the Differentiated Services Code
Point (DSCP) value, which provides a best-effort delivery of packets. DSCP can also be
matched in the QoS configuration.

Outside the ToS/DSCP markings, QoS is normally handled by policy lists that define the
traffic that is to be shaped. As mentioned earlier, these lists can define traffic using multiple
different keys, including source/destination IP, source/destination port, and packet type.
Normally, the first thing to do is limit ICMP packets if possible. This causes some confusion
as ping will not work correctly to identify a problem. Incidentally, Juniper did this with
their router interfaces to avoid having to process a lot of ICMP packets, which again caused
people to assume that there was packet loss on the first hop.

The following chart shows DSCP/ToS and IP Precedence values. All values are represented
in the decimal format rather than hex or binary:

DSCP (decimal) ToS (decimal) Precedence (decimal)

0 0 0

8 32 1

18 72 2

24 96 3

34 136 4

40 160 5

48 192 6

56 224 7



Understanding and Configuring Quality of Service

[ 254 ]

Utilizing QoS
Turning on QoS on traffic from a system is relatively painless. There will be an option in the
operating system to enable either CoS or ToS.

Example of QoS in Linux
In Linux, you can see how traffic is being prioritized using the ip link list command,
where it will show you what queuing discipline or qdisc you are using:

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state
UP mode DEFAULT group default qlen 1000
 link/ether 74:d4:35:86:74:e6 brd ff:ff:ff:ff:ff:ff

Here we can see that qdisc is set to pfifo_fast; First In, First Out (FIFO). The
pfifo_fast queuing discipline will honor some CoS/ToS tags, but this is not guaranteed.
In order to utilize QoS, we will need to change the qdisc to something that can be
configured, such as Hierarchical Token Bucket (HTB) disc.

HTB utilizes the token bucket algorithm, which does not need to know about outgoing
interface characteristics, such as bandwidth. A fundamental part of HTB is borrowing
tokens from parent interfaces if available. This means that, if the class has hit the minimum
rate but not the ceiling or maximum rate, it will ask for more bandwidth.

To utilize the qdisc, attach them using the tc or traffic control command:1.

      tc qdisc add dev eth1 root handle 2: htb default 11

The preceding command creates an HTB qdisc to eth1 and assigns it the
handle 2.

We can then create a class definition where there is a minimum and maximum2.
guaranteed rate, such as the following where we set the minimum rate to
200kbps and maximum rate to 500kbps:

      tc class add dev eth1 parent 2: classid 2:1 htb rate \
      200kbps ceil 500kbps

The preceding command defines QoS class 2:1, attached to queuing discipline 2,
and sets a minimum guaranteed bandwidth of 200kbps and ceiling of 500kbps.



Understanding and Configuring Quality of Service

[ 255 ]

Finally, a filter rule is created:3.

      tc filter add dev eth1 parent 2: protocol ip match ip \
      sport 22 0xfff classid 2:1

The filter applied is set up in such a way that traffic on source port (sport) 22
(SSH) belongs to the 2:1 class and is given a 200 Kbps guaranteed pipe,
regardless of the traffic on the system.

Example of QoS in Windows
In Microsoft Windows, you can enable QoS by following these steps:

Choose Start, then Control Panel, and then double-click on Network1.
Connections.
Right-click on the connection that you want to enable QoS on and then choose2.
Properties.
In the box labeled This connection uses the following items, choose QoS Packet3.
Scheduler and enable it.
You can now click on OK.4.

Hierarchical QoS
There are two main QoS designs—flat QoS, where one QoS policy applies to the entire
physical interface, and Hierarchical QoS (HQoS), which allows you to provide multiple
levels of service. For example, there may be no limits to traffic in general, but once there is
congestion, voice and video traffic will be given precedence.



Understanding and Configuring Quality of Service

[ 256 ]

In the event that there is still congestion, voice traffic will be given precedence over video
traffic. Refer to the following diagram:

Here we have an HQoS design where three customers share the same physical port and
there is traffic classification within the virtual ports assigned to each customer. HQoS is
useful for multiservice providers, such as cable companies that provide voice, video, and
the internet. With HQoS, they can carve out space for the video and voice and leave the rest
for the Internet.

QoS in open source controllers
When looking to implement QoS in a network, it is important to understand the network
design and layout. In an OpenFlow 1.3+ controlled network, QoS policies and queues can be
built and connected to ports within the network. In general, we police outbound traffic, but
you can police both outbound and inbound traffic if necessary.



Understanding and Configuring Quality of Service

[ 257 ]

For this configuration example, we will use Open vSwitch (OVS):

The first thing that we will do is create a QoS policy on the switch and attach it to1.
the port:

      sudo ovs-vsctl set port et1 qos=@newqos -- --id=@newqos create qos
      type=egress-policer other-config:max-rate=10000000 queues=1=@q1,2=@q2
      -- --id=@q1 create queue other-config:min-rate=6000000
      other-config:max-rate=6000000 -- --id=@q2 create queue
      other-config:min-rate=4000000 other-config:max-rate=4000000

This creates a pair of QoS queues—one set to 6 Mbps and the other to 4 Mbps; the
max rate is set to 10 Mbps. The profile is connected to port et1 on the switch.

If we want to do something similar in OpenDaylight, we can do it via the Karaf2.
interface. We need to install a few extra packages in the OpenDaylight Karaf
interface:

      karaf>feature:install odl-nic-core-mdsal odl-nic-console
      odl-nic-listeners

Then, we need to create an intent. The syntax for this is as follows:3.

      intent:qosConfig -p <qos_profile_name> -d <valid_dscp_value>

We will use DSCP_32 and the valid values are 0-63:4.

      intent:qosConfig -p DSCP_32 -d 32

Then, we add the intent to the flow. The syntax for this is as follows:5.

      intent:add -a ALLOW -t <DESTINATION_MAC> -f <SOURCE_MAC> -q
      QOS -p <qos_profile_name>

Here we apply the intent to the flow between two boxes, tagging all traffic as6.
DSCP_32:

      karaf>intent:add -a ALLOW -t 10:00:00:00:00:01 -f 10:00:00:00:00:02
      -q QOS -p DSCP_32



Understanding and Configuring Quality of Service

[ 258 ]

Here we use a command called dpctl dump-flows and confirm the flow is7.
properly classified on the switch:

      $ dpctl dump-flows

      cookie=0x0, duration=11.873s, table=0, n_packets=3, n_bytes=294,
      idle_age=11,
      priority=9000,dl_src=10:00:00:00:00:01,dl_dst=10:00:00:00:00:02
      actions=NORMAL,mod_nw_tos:128

In the preceding code, we see the flow is added to the switch with the ToS value
attached (the ToS value is 4 x the DSCP value).

QoS in NSX
In VMware NSX, QoS is handled by setting the DSCP and CoS values for the virtual
machine:

This is accomplished by opening the settings for dvPortGroup and choosing1.
Traffic filtering and marking:



Understanding and Configuring Quality of Service

[ 259 ]

Once you have enabled traffic filtering and marking, you will need to create2.
traffic rules. Next, we have a traffic rule named Network Traffic Rule 1, and
we are setting it to tag traffic with either a CoS value, a DSCP value, or both:



Understanding and Configuring Quality of Service

[ 260 ]

Now that we have chosen a tag, we can see a few more of the options, such as3.
updating the CoS or DSCP tags. If CoS/DSCP is already set in the packet, we will
remove it and replace it here to make sure that it follows the design. Also, the
direction of the traffic we are modifying is chosen; it can be ingress, egress, or
both:

When we create a new traffic rule, we need to set up traffic for it to match to. For4.
example, we can match by IP, MAC, or system traffic type:



Understanding and Configuring Quality of Service

[ 261 ]

If we choose System traffic type, we get a selection box that holds predefined
types of traffic, including Management, Virtual Machine, and vMotion. The
qualifier box is set to is, and we can choose one of the predefined traffic types:



Understanding and Configuring Quality of Service

[ 262 ]

We will choose Virtual Machine and now we have a new traffic rule that updates
any virtual machine traffic to use the DSCP code 63:

In the preceding sequence, you learned how to create a QoS profile and attach it to the
system to mark traffic from virtual machines to a specific DSCP code. The DSCP setting
allows the network to handle the traffic as defined.

Summary
In this chapter, you learned about QoS, how it works, and how to use it with NGN
technologies. Examples of simple QoS on both Linux and Windows were shown along with
the basic concepts of QoS in both OpenFlow and VMware NSX. We covered both flat and
hierarchical QoS and their uses in both enterprise and service provider networks.

In the next chapter, you will learn how to secure a network using controllers, firewalls, and
other security devices.



13
Securing the Network

In the previous chapter, we talked about how to utilize QoS in a NGN including flat and
HQoS, layer 2 only CoS, and layer 3 ToS, along with DSCP and traffic shaping.

In this chapter, we will talk about securing a NGN using network controllers and other
mechanisms, such as network taps and monitoring devices.

By the end of this chapter, you should be able to:

Understand traffic steering
Create a DMZ
Send traffic through a firewall using open and proprietary network controllers
Mirror traffic to a monitoring device

Terminology used in this chapter
In this chapter, we will be using a lot of specific terms from vendors that represent similar
concepts. I will break down the terms into different areas based on their application. In
order to compare and contrast the different solutions, there needs to be a way to evaluate
them on a level field. We will learn the following types of terms:

Generic: This refers to industry-standard terms that apply to all the different
systems mentioned, including OpenFlow controllers, VMware NSX, and Cisco
ACI
Cisco ACI-specific terms: These are terms that are used specifically by Cisco to
explain how to configure features and services
VMware NSX-specific terms: These are terms used by NSX that correlate to
other industry standard terms



Securing the Network

[ 264 ]

Generic terms
Generic terms such as service chain are vendor-agnostic ways of naming features, functions,
and hardware. As we move through the chapter, we will align vendor-specific terms with 
generic terms as needed. Here is a list of generic terms:

Service chain: A service chain is a sequence of actions performed on the traffic
to/from a device in the network. These actions can be performed by linking
multiple virtual or physical services together, such as a firewall and load
balancer.
Intrusion Detection System (IDS): An IDS is a service that monitors traffic and
determines whether there is malicious traffic or behavior on the network.
Deep Packet Inspection (DPI): A deep packet inspector looks at not only the
headers, but also the payload in IP packets and provides the information to the
user and/or automated tools to handle.
Application Delivery Controller (ADC): An ADC offloads common tasks, such
as SSL, from a host. ADCs can also provide compression, traffic shaping, and
load balancing.
Tap: This is a device that connects to a cable in the network and mirrors the
traffic from the location to either a service or tap aggregator.
Tap aggregator: It connects multiple taps together and allows traffic to be routed
to different services, such as an IDS or DPI.

Cisco ACI-specific terms
Cisco ACI uses a few non-intuitive terms to describe generic functions. Here are their
explanations:

Service graph: Cisco's representation of a service chain
Function node: A single service, such as a firewall or load balancer, connected to
the service graph
Function node connectors: The name for the connection used to link function
nodes to the service graph
Service graph connector: Used to connect multiple function nodes together
Terminal node: Connects the service graph to the contract used by End Point
Groups (EPGs)



Securing the Network

[ 265 ]

VMware NSX-specific terms
VMware does a good job of using extended definitions of generic terms such as distributed
firewall, which is a virtual firewall that is applied on a per-virtual-NIC basis. In the
following list, we explain a few terms to clarify any questions:

Distributed Firewall (DFW): A DFW is a firewall implemented in the VMware
ESXi host, using hardware features in network cards when available
Rule table: The rule table is a list of rules to apply to traffic crossing the DFW
Connection tracker table: The connection tracker table is a cache of the current
flow entries that use rules with a permit action
Service composer: The service composer is a tool to create and apply network
and security services to a virtual infrastructure

The evolution of security on the internet
The first rule of security is that you need to treat all devices on your network as if they are
compromised and may be used against you. The second rule of security is to refer to the
first rule. I say this not because security is impossible but more to point out that when
securing a network, you need to separate or create segments/VLANs for the devices on the
network to provide security against each other. This segmentation protects the network
from an attacker connecting directly to an open port and having access to secure devices.

Right now, in mid-2017, the security issue all over the news is Ransomware, where
computer files are encrypted or hidden from their owners displaying a screen on the
computer stating this and that the user is to send money to the kidnapper. Before
Ransomware, and continuing today, a big issue has been Distributed Denial of Service
(DDoS) attacks, where thousands of compromised systems send traffic to a single
destination to cause a service interruption or Denial of Service (DoS).

Before the current DDoS attacks, there were normal DoS attacks, including reflection and
flood type attacks, where an attacker would send spoofed packets to have the target's IP
address as the return-to locations that would return a lot of traffic. I remember clearly, back
in 1997, one of my acquaintances determining that sending a packet to the broadcast
address (x.x.x.255) of a network exchange point would return multiple packets. This
behavior was disabled on most network devices soon after.



Securing the Network

[ 266 ]

A broadcast address is an address that is flooded to all the devices on the
same network block, so 192.168.1.255 would get responses from
anything in the range of 192.168.1.1-192.168.1.254.

In my career as a network engineer/architect, I have witnessed too many DoS attacks to
count. Because I ran Internet Relay Chat (IRC) servers, the servers were a constant attack
point for people looking to cause havoc or harass other users. One of the most memorable
occasions was the high-profile attacks made by a person using the handle Mafiaboy, who
managed to take down companies such as Yahoo!, Amazon, and others. The attacks were
done during a meeting of the North American Network Operators Group (NANOG) that
my employer at the time, Exodus Communications, was hosting. As the attendants were
from multiple network service providers, we were able to create a Network Operations
Center (NOC) where we worked together to try and solve the issues.

To state the obvious, the internet was not designed with security in mind; it was designed
for connecting devices across the world to share information. Over time, security concepts
have been developed to handle security on both the network devices and the end hosts.
Initially, filters on the OS were used, then filters in the networking devices. Over time,
concepts such as firewalls, virus scanners, and other security technologies were introduced.

One of the first clear signs that security was needed on globally networked computers was
established by the Morris worm. In 1988, the Morris worm was a self-replicating computer
program that infected many computers. It provided a clear picture of what issues can come
out of having multiple computers networked. After the Morris worm, changes were made
to systems to help secure them, though there was still a large number of public systems with
anonymous access methods enabled.

Over time, it was recognized that while you could try to secure the computer, securing the
network was just as important. Computers are constantly updated and new operating
systems are released. Each time a system is updated, some issues are corrected, while more
issues are created.

To this day, there are a lot of default services on newly installed computer systems that
should not be enabled, such as mail servers. Most systems no longer need to run mail
servers, yet by default they are enabled on most Linux distributions and must be shut off
manually. Since a mail server has the ability to write to the file system, it provides a point of
intrusion.



Securing the Network

[ 267 ]

Though for a completely different reason, most home users are insulated from attacks to the
mail system as most ISPs filter the mail port (25), both inbound and outbound, to limit
spam. Also, most consumer and enterprise networks are behind Network Address
Translation (NAT), where devices are not accessible from outside of the network directly,
but only via rules that are created when the device connects to systems outside the network.

Traffic steering
Whether running a load balancer or a port redirector, traffic steering is an important part of
security in networks. Traffic steering is the concept of redirecting traffic based on more than
just the IP addresses. When traffic is only redirected based on the IP address, it is being
routed. Traffic steering happens above layer 3, using TCP/UDP ports, session information,
and applications to determine where to send traffic. In the Cisco ACI language, this is called
a service graph.

The simplest version of traffic steering is load balancing, where all traffic goes to one or
more load balancing network devices and is then redirected to the correct server. While
load balancing is not security, it does use some similar concepts. Traffic comes into an IP
address, which is connected to the load balancer, then the load balancer sends the traffic to
one of the servers behind it based on how much traffic/load is on the servers.

Simple load balancer design



Securing the Network

[ 268 ]

Here we see 50 users visiting a website. The load balancer redirects 25 users to each
backend server.

The added benefit of the load balancer is that, since it terminates all the connections and
then creates a new session to the server, no incomplete or fake packets get through. Load
balancers are not just for traffic sharing; they can also protect your servers from attacks such
as a SYN flood.

A SYN flood is where thousands to millions of SYN packets are sent to a
device in order to block real traffic from getting through. When a SYN is
sent and SYN-ACK is returned, the other side never acknowledges the
packet and the connection eventually times out.

Traffic steering can be used to send users to a local cache of a site or content, such as
movies. This saves bandwidth and money. It can also involve sending multiple copies of
traffic or mirroring traffic, which we will discuss in the Mirroring traffic to a monitoring device
section later.

Demilitarized/Demarcation Zone (DMZ)
A network DMZ is a location where network devices can be placed and accessed from the
outside world directly. In most corporate networks, all of the internal systems are behind
firewalls and filters. If there is a need to provide external access, a DMZ is created. The
name DMZ comes from the concept of creating safe zones/areas where no military presence
is allowed between countries or in contested areas. There is a demilitarized zone between
North and South Vietnam, which also acts as the border. When we look at this from a
networking perspective, DMZ is an area where there is less protection/monitoring, which is
a similar idea.

DMZs are often used to host servers such as FTP, mail, and others that are likely to be
compromised systems, such as DNS. A DMZ offers a secondary level of protection for your
internal network by segregating dangerous traffic.



Securing the Network

[ 269 ]

Design of a DMZ in concert with an internal network

Some companies, such as Cisco Systems, offer a DMZ where certain company-related, not
managed, systems can be run. A famous one is employees.org, which sits behind the Cisco
network on the DMZ. Other example systems that could be deployed would be devices
with next generation services implementing new protocols, which may not be well
supported by the current firewall/filtering technology, such as Location/ID Separation
Protocol (LISP). Publicly accessible systems, such as Proof of Concept (PoC) labs, will often
be connected to the DMZ to allow controlled external access.

LISP is a way to disconnect the IP address of a system from a physical
location, similar to how cellular phones have a number but not a fixed
location.

DMZs are important for many reasons—the greatest being the ability to segment away
devices that could be easily compromised. When designing a DMZ, pay close attention
particularly to any connections, firewall rules, or other links that may allow devices from
the DMZ easy access to your internal network; that is, any device on the DMZ should be
accessed by the internal network the same way as any other device on the internet would.

http://employees.org


Securing the Network

[ 270 ]

Designing a DMZ
In order to create a DMZ, you will need at a minimum three ports on your router/firewall
(depending on the design): one port for the internet and two ports for internal purposes,
including the one that has the ability to be designated as or configured as a DMZ port.

If the router/firewall only has an external port and an internal switch (that
is, all other ports are on the same logical network), then you cannot use it
effectively as a DMZ. While you may be able to configure VLANs or use
other configuration options to create a DMZ port, these may not be as
secure as one that is built in the system.

Multiple DMZs may be set up to hold different types of equipment. While a single DMZ
may be used to host a PoC lab, if you need to add external web servers and other services as
well, you may want to create a second DMZ to separate two or more services.

When creating a DMZ, you need to determine the purpose of the DMZ and what features
you will want to use:

Do you want each device to have a public IP address?
Which services will be hosted on the DMZ?
Which filtering/firewall rules will you apply to the DMZ?
Will you have more than one DMZ or DMZ port?

Once you have answered these questions, you'll be able to design the DMZ and the proper
equipment ordered.

Implementing the DMZ
Now that the DMZ design is done and equipment ordered or already in place, we can set
up a DMZ.

To set up a DMZ, we need to decide which ports will be used for what function. If we use a
device with a DMZ port, things will be relatively simple as the DMZ port will have options
for configuration and internal policies, which will avoid any issues with mixing networks.



Securing the Network

[ 271 ]

Here is an example where www.example.com points to a public IP that is assigned to the firewall

Here, we see an example where a single IP address, 192.0.2.2, is used for both internal and
DMZ traffic. The RFC 1918 block 192.168.1.0/24 is used for the DMZ network, and
192.168.2.0/24 is used for the internal network. When traffic comes into the web server,
responses are sent through the firewall and NAT will return it back to the public IP of
192.0.2.2.

The DMZ can also be set up with multiple IP addresses for each server: 1:1 NAT (where the
public and internal address are the same but still filtered through the system) and other
designs.



Securing the Network

[ 272 ]

Using network controllers to implement
security
Network controllers, whether OpenFlow, API, or the ones based on general automation, can
reroute traffic through firewalls and other security devices, either virtual or physical. The
concept is not new, but the implementations are. Projects such as OPNFV, an open source
project under the Linux Foundation that brings together multiple components to create a
single architecture, include a Virtual Firewall (vFW). OPNFV also provides OpenDaylight,
ONOS, and much more, so we will utilize their projects as the basis for looking at open
source controllers and VNFs.

The concept of inserting a virtual network function between devices is called service
chaining. While it can also apply to physical devices, such as standalone firewalls, service 
chaining generally refers to virtualized services. Essentially, you insert a new service and
put it in a chain and you can have multiple services, such as a firewall, DPI, and IDS.
Different services can be brought in and out of use depending on the needs. Traffic can be
routed in different ways through the devices. East-west (internal) traffic may be made to go
through only a firewall, while north-south (external) traffic may be made to go through
both a firewall and IDS.

As talked about previously, NFV allows features such as vFWs to be deployed in the
network fabric or even at the edge of the network device. This functionality is required to
easily route traffic through firewalls. While network steering could attempt to redirect
traffic through a physical firewall, this firewall would need to be located within the same
network area as the device being firewalled, which is expensive and not cost-effective.

Both Cisco ACI and VMware NSX provide the ability to configure vFWs and send traffic
through them within the network on demand. VMware NSX has the concept of the DFW,
which allows a virtual stateful firewall to be deployed within the fabric and enforced
directly at the NIC on the VM server. Cisco ACI uses third-party solutions, such as the Palo
Alto Networks VM series virtual vFW / physical firewall, which are directly integrated into
the APIC using device packages; traffic is sent to them using the concept of service graphs.



Securing the Network

[ 273 ]

Open source controllers and security
Using the OPNFV project as a basis for our designs allows the interchanging of controllers
and virtualized services. The OPNFV project contains support for OpenDaylight, ONOS,
and even Juniper's OpenContrail controller.

OPNFV Danube project diagram from wiki.opnfv.org



Securing the Network

[ 274 ]

In the preceding diagram, you can see the layout of OPNFV and the different systems it
supports, from data planes (DPDK and OVS) to Virtualized Network Functions (VNFs).
Security is an important part of the OPNFV project and the VF and VNF are integral to
security. The application of vFW to systems is very similar to how VMware NSX
implements its firewall. Other virtual security appliances can be an IDS.

OPNFV vFW VNF architecture

In the preceding diagram, we can see the concept of VNFs in OPNFV. A vFW is
implemented on Open vSwitch using Data Plane Development Kit (DPDK), which
provides hardware integration for networking in the hypervisor.

Security using OpenDaylight
In OpenDaylight, there is the concept of a virtual tenant. The virtual tenant manager is a
plugin that provisions VNFs such as a vFW. A vFW can be either commercial or open
source. Palo Alto Networks provides a commercial vFW; pfSense and OPNSense both 
provide open source firewalls.



Securing the Network

[ 275 ]

To get traffic to and from the firewall, flow filter rules will be created that send traffic that
needs to be inspected through the firewall. Traffic can be north-south (to/from the public
internet) or east-west (inside the network).

Routing server traffic through a vFW

Here, we have an OpenFlow switch routing traffic between hosts through a vFW, that is,
service chaining. This is a common design for east-west traffic and provides protection for
the data from the web server. If needed, a virtual Intrusion Detection System (vIDS) can
be inserted in the chain for external traffic coming to the web server. A load balancer could
also be added to the chain to allow more servers. Refer to the following diagram:

Service-chaining multiple VNFs



Securing the Network

[ 276 ]

Here, we see a design where traffic between the storage and web server goes through a
firewall, while traffic from the external network is sent through both a vFW and a vIDS.
Internal traffic is shown in blue, and external traffic is shown in green.

Commercial controllers and security
Both Cisco ACI and VMware NSX use similar concepts to implement security. Each relies
on information provided by the network manager to create the filters and firewalls
necessary to control communication between devices. With Cisco ACI, an intent is created
and ports can be assigned to the EPG connected to the intent. With VMware NSX, the
devices are virtual, so templates could be created that automatically get different security
implementations.

Since Cisco ACI is more hardware-focused, we will go through what the deployment of an
application policy (intent) looks like and how it is applied to a hardware device. For
VMware NSX, we will focus on how the system is secured using a virtual network.

Security using Cisco ACI
A quick overview of Cisco ACI shows what a firewall looks like once implemented through
the ACI application policies. Here we are using a Palo Alto Networks V series vFW, which
is supported in the APIC. Now refer to the following diagram:

A simplified ACI virtualized firewall design



Securing the Network

[ 277 ]

Here we can see a very simple picture of an ACI managing a vFW. The application policy
applies the rules to different EPGs. In the next section, we will describe the way ACI
functions.

When using Cisco's ACI, you first start with an EPG to which an Application Policy Model
(APM) is attached. An APM consists of the following items:

A set of EPGs, VMs, servers, and other devices with the same policy
A set of rules defining communication between the EPGs
A set of network services (VNFs) that are chained between the EPGs

In difference to other technologies, ACI believes in a zero-trust architecture. Any device
attached to an ACI network is assumed to be untrustworthy until policies are assigned to
the device or the device is attached to an existing EPG. This is a useful feature as it protects
from unauthorized equipment being plugged into the network and getting access to
important systems.

Because ACI was designed for multitenant solutions, Microsegmentation (uSeg) is a key
part of ACI security. From the MAC layer up, ACI can provide separation, even with
different systems on the same port or VLAN. Cisco calls their security concepts intra-
endpoint group isolation, IP-based group isolation, and uSeg endpoint groups.

By default, any device in the same EPG can talk to any other device in the same EPG
without requiring implicit permission. The idea with intra-endpoint group isolation is that
you can block all the devices in the same EPG from being able to talk to each other, similar
to the private VLAN concept. If you utilize intra-endpoint group isolation, you will need to
create contracts for devices that need to connect to each other.

When using uSeg, the goal is to create security between specific devices on the same VLAN
or interface rather than block all of the traffic between all the devices on the VLAN as with
intra-endpoint group isolation. IP-based group isolation is generally used for physical
interfaces but can be connected to different virtual solutions, such as those from VMware.
All traffic management in layer 2 and 3 is handled according to the way the EPG is
configured and what rules are applied.



Securing the Network

[ 278 ]

ACI layer 4-7 service graph
This section will contain a lot of Cisco ACI-specific terms that we will explain in more
general ways.

ACI utilizes as well as operates at layer 4-7 using the service graph. This graph represents
the order in which the different networking devices (function nodes) will be applied. A
function node is a single service function, such as a firewall or load balancer.

Function nodes are connected to the APIC via function node connectors and inserted into
the path of two EPGs using a terminal node that attaches to the contract that specifies how
the traffic will flow.

If this description is confusing, I have created a diagram to explain how the service graph
works:

The Cisco ACI service graph

Here you can see a Cisco Nexus 9300 running in ACI mode. I have left out the APIC as we
have learned that at least three to five APICs are necessary for a production ACI design.

The blue lines represent traffic from the external consumer, which is being put into the
external EPG, which then uses a contract to determine the service graph that will be
followed. The service graph uses function nodes, such as the vFW and ADC, and connects
to them using the function node connector. Once through the service graph, the traffic is
delivered to the web server.



Securing the Network

[ 279 ]

Security using VMware NSX
When using security within VMware NSX, the concept is very similar to Cisco ACI, and it
involves using the Service Composer to create service chains. NSX contains a DFW, so no
third party is necessary to get basic firewall rules. The rules are applied at the level of the
virtual Network Interface Card (vNIC) using a kernel module that attaches to the physical
network interface card. Because the work is done by the NIC, the performance is close to the
line rate.

The DFW can run from layer 2 to layer 4 by default, with third-party add-ons going up to
layer 7. As discussed earlier, layer 2 is the MAC layer, while layer 3 uses TCP/UDP
source/destination information. At layer 4, the TCP/UDP ports are used as a filter. As
explained by VMware, the DFW is done using two tables attached to the VM vNIC. The
first table is the connection tracker, which caches the flow information for rules with permit
actions. The second table is a rule table, which contains all the rules to be applied to the
traffic.

As packets come in, they are run through the rule list starting from the top rule and
progressing serially through the chain. The packets first go through the connection tracker
table to check whether there is an entry for the flow; if not, the packet is sent through the
rule table. Once the packet matches a rule, the action specified is done:
forward/drop/modify/and so on. It is important to remember that because the rules are
matched serially, you need to have more granular rules at the top and the default rule at the
bottom.

VMware NSX uses what is called the Service Composer to configure service chains. The
flow is similar to Cisco ACI:

The security groups and members are configured (EPGs in ACI).1.
The services that will be utilized are provisioned (service graph in ACI).2.
The services are applied to the groups (function nodes in ACI).3.
Last is the automation of application services by defining conditional rules.4.

Once the service is composed, it can be enabled to manage traffic as necessary. To add a
new service to another tenant on the system, you simply add that tenant to the membership
list.



Securing the Network

[ 280 ]

Now we will build a firewall rule using the Active Directory (AD) service we configured in
Chapter 7, VMware NSX:

First, we select a firewall and add a new section; we will call the section1.
Authenticated Users and add it below the current first section:



Securing the Network

[ 281 ]

In the following screenshot, we see the Define dynamic membership tab where2.
the criteria for being a part of the security group are configured. Here you can use
the computer OS, VM name, IP address, and many other fields. We are using the
Entity option and checking that it belongs to the AppConfiguration group.



Securing the Network

[ 282 ]

We will then add a source, which could be an IP, VM, or a myriad of other3.
options. We will use Security Group and choose Admins.



Securing the Network

[ 283 ]

For the destination, we will use Internal Services, so people in the Admin group4.
in the AD will be able to access internal services.

Mirroring traffic to a monitoring device
Mirroring traffic is a common way of monitoring the security of network devices. Mirroring
can also be referred to as Switch Port Analyzer (SPAN). It can happen inline or out of band
via network taps. While out of band is more common, inline tapping is being built over
time. The value of inline tapping is that, when suspect traffic is noticed, it can be
blocked/steered to an IDS or another inspection device.

In the beginning, we used physical taps, such as the vampire tap, which connects directly to
the physical wiring and allows a copy of the traffic to be acquired. Earlier, networks used a
coax cable that had a center wire and a metal shield around them. The tap would be
physically pushed onto the wire, one part touching the center wire and the other the shield.



Securing the Network

[ 284 ]

As networks progressed, physical inline taps were created. These taps allowed the traffic to
flow normally, but they also sent a mirror of the traffic out to a special port on the tap.
When tapping fiber optic networks, these types of tap are still common with different
ratings, such as 10/90, where 10 percent of the light goes to the tap and 90 percent to the
other side of the connection. The current technology in taps is that they not only mirror the
traffic, but can also sample, slice, and otherwise modify the packets.

Using a SPAN port
A SPAN port is a physical port on a switch or router where traffic from other ports can be
mirrored. When using a SPAN port, it is important to utilize one that is large enough to
handle the traffic you send to it. For example, if you are mirroring multiple 1 Gb ports out
of a single 1 Gb SPAN port, you may overload the port and lose traffic or worse.

SPAN ports can be created on OpenFlow switches relatively simply, as I wrote about in
multiple posts on sdntesting.com back in 2014. The posts covered the same utilization of
OpenFlow switches as taps.

In my testing, I have used Pica8 switches to replicate traffic, lots of traffic, using static
OpenFlow commands. For example, here is a design where I take 10G of traffic and mirror
it across five ports:

https://www.sdntesting.com/


Securing the Network

[ 285 ]

First, we need to set up a new bridge port and add interfaces to it:1.

      # Add Bridge br0 - for PCAP Replication - 1st Port
      ##############################
      # te-1/1/1 is input te-1/1/2, te-1/1/3, te-1/1/4, te-1/1/5, te-1/1/6
      are output
      #-------------------------------------------------------------------
      ------------------
      $VSCTL add-br br0 -- set bridge br0 datapath_type=pica8
      other-config=datapath-id=100
      $VSCTL add-port br0 te-1/1/1 -- set interface te-1/1/1 type=pica8
      $VSCTL add-port br0 te-1/1/2 -- set interface te-1/1/2 type=pica8
      $VSCTL add-port br0 te-1/1/3 -- set interface te-1/1/3 type=pica8
      $VSCTL add-port br0 te-1/1/4 -- set interface te-1/1/4 type=pica8
      $VSCTL add-port br0 te-1/1/5 -- set interface te-1/1/5 type=pica8
      $VSCTL add-port br0 te-1/1/6 -- set interface te-1/1/6 type=pica8

We then need to program the ports directly. This involves removing the default2.
flow and inserting a new flow that mirrors traffic from port 1 to the other five
ports:

      # Remove Default Flow (not treating this as HUB!)
      ovs-ofctl del-flows br0
      # Add replication flow 1 -> 2,3,4,5,6
      ovs-ofctl add-flow br0
      in_port=1,dl_dst="*",dl_src="*",dl_type="*",dl_vlan_pcp="*",
      dl_vlan="*",actions=output:2,3,4,5,6

As a final step, we need to ignore any traffic coming in the ports that we are3.
using as SPAN/mirror ports:

      # Drop ingress traffic from mirror ports
      ovs-ofctl add-flow br0
      in_port=2,dl_dst="*",dl_src="*",dl_type="*",dl_vlan_pcp="*",
      dl_vlan="*",actions=drop

The preceding code is an extreme example of using a switch where the traffic that comes in
port 1 is replicated out to five other ports, essentially creating ports where different packet
inspection devices, such as DPI and IDS, can be located.



Securing the Network

[ 286 ]

To expand on this idea, it is also easy to mirror multiple ports to multiple devices. In the
following scenario, we will have four ports bridged so that they can talk to each other, with
plus each port mirrored out to another port, as seen in the following diagram:

Here are the commands that are run to create the ports and the mirrors; the configuration is
notated to explain the functions being done:

# Add Bridge br20 - for TAP Span - 1st Port
#############################################
# Bridged : te-1/1/21, te-1/1/22, te-1/1/23, te-1/1/24
# Output : te-1/1/25, te-1/1/26, te-1/1/27, te-1/1/28
#---------------------------------------------------
$VSCTL add-br br20 -- set bridge br20 datapath_type=pica8 other-
config=datapath-id=120
$VSCTL add-port br20 te-1/1/21 -- set interface te-1/1/21 type=pica8
$VSCTL add-port br20 te-1/1/22 -- set interface te-1/1/22 type=pica8
$VSCTL add-port br20 te-1/1/23 -- set interface te-1/1/23 type=pica8
$VSCTL add-port br20 te-1/1/24 -- set interface te-1/1/24 type=pica8
$VSCTL add-port br20 te-1/1/25 -- set interface te-1/1/25 type=pica8
$VSCTL add-port br20 te-1/1/26 -- set interface te-1/1/26 type=pica8
$VSCTL add-port br20 te-1/1/27 -- set interface te-1/1/27 type=pica8



Securing the Network

[ 287 ]

$VSCTL add-port br20 te-1/1/28 -- set interface te-1/1/28 type=pica8
# Remove Default Flow (not treating this as HUB!)
ovs-ofctl del-flows br20
# Add replication flow from each bridged port to each of the other ports in
the group
ovs-ofctl add-flow br20
in_port=21,dl_dst="*",dl_src="*",dl_type="*",dl_vlan_pcp="*",dl_vlan="*",ac
tions=output:22,23,24,25,26,27,28
ovs-ofctl add-flow br20
in_port=22,dl_dst="*",dl_src="*",dl_type="*",dl_vlan_pcp="*",dl_vlan="*",ac
tions=output:21,23,24,25,26,27,28
ovs-ofctl add-flow br20
in_port=23,dl_dst="*",dl_src="*",dl_type="*",dl_vlan_pcp="*",dl_vlan="*",ac
tions=output:21,22,24,25,26,27,28
ovs-ofctl add-flow br20
in_port=24,dl_dst="*",dl_src="*",dl_type="*",dl_vlan_pcp="*",dl_vlan="*",ac
tions=output:21,22,23,25,26,27,28
# Drop ingress traffic from mirror ports
ovs-ofctl add-flow br20
in_port=25,dl_dst="*",dl_src="*",dl_type="*",dl_vlan_pcp="*",dl_vlan="*",ac
tions=drop
ovs-ofctl add-flow br20
in_port=26,dl_dst="*",dl_src="*",dl_type="*",dl_vlan_pcp="*",dl_vlan="*",ac
tions=drop
ovs-ofctl add-flow br20
in_port=27,dl_dst="*",dl_src="*",dl_type="*",dl_vlan_pcp="*",dl_vlan="*",ac
tions=drop
ovs-ofctl add-flow br20
in_port=28,dl_dst="*",dl_src="*",dl_type="*",dl_vlan_pcp="*",dl_vlan="*",ac
tions=drop

Now that we have looked at the open hardware, open source way to tap/mirror traffic, we
can look at hardware and software that are commercially available.

Using an inline tap
The standard method of mirroring traffic is to put a purpose-built network tap between the
switch and the host/network. This is not as flexible as using a built-in SPAN function of a
network device, but it is believed to be more stable as the tap should go into bypass mode if
anything happens, such as a power failure.



Securing the Network

[ 288 ]

The inline tap will then generally be aggregated into a tap aggregator, which can then
forward the traffic to the correct inspection device. The following diagram shows traffic
being mirrored to the tap aggregator:

In the preceding diagram, we see different types of traffic being mirrored to the tap
aggregator, including internal host traffic and internet traffic. Some of the traffic is routed to
the IDS, and some to the DPI. Traffic can be dynamically routed to one or more inspection
devices at any time.

GbE copper taps are inexpensive and very useful. Put together with an OpenFlow switch,
as shown in the preceding diagram, a simple inexpensive tap aggregation network can be
built. If you are attempting to tap higher speed links, such as 10 GbE, you will need to go
for a more expensive solution.

While building the tap aggregation network, it is useful to determine whether you need
smart taps. Smart taps offer packet slicing, packet filtering, and other features in hardware
without loss.



Securing the Network

[ 289 ]

Summary
In this chapter, you learned about general security concepts and how to apply them to
different next generation systems. Using the OPNFV project, we looked at configuring
switches using OpenFlow and vFWs. For Cisco ACI and VMware NSX, we used built-in
tools, such as the NSX DFW, along with third-party software vendors, such as Palo Alto
Networks, to create more secure environments.



Index

A
accepted OCP compute networking hardware  49
Access Control List (ACL)  71, 121
Accton AS7712-32X  58
ACI modes
   L2 Fabric  162
   L3 Fabric  162
   multipod  162
   Stretched Fabric  162
Active Directory (AD)  279
active network  66, 67
Airflow  205
Apache Thrift
   about  88
   goals  89
API calls, OF-DPA
   ofdpaBcmCommand  78
   ofdpaDropStatusActionGet  78
   ofdpaDropStatusAdd  78
   ofdpaDropStatusDelete  78
   ofdpaFlowAdd  78
   ofdpaFlowByCookieDelete  78
   ofdpaFlowByCookieGet  78
   ofdpaFlowDelete  78
   ofdpaFlowModify  78
Application Centric Infrastructure (ACI)
   about  138, 158
   concepts  159
   configuring, via CLI  180
   configuring, via GUI  166, 167, 169, 171, 172,

174, 175, 177, 179
   configuring, via REST  184
   configuring, via wizards  182
   network design  163
   requisites  163
Application Policy Infrastructure Controller (APIC) 

26, 138, 158
Application Policy Model (APM)  277
Application Program Interface (API)
   about  15, 137
   concepts  86
Application-Specific Integrated Circuit (ASIC)  66
Attachable Entry Points (AEPs)  243
Autonomous System 1 (AS1)  18
Autonomous System Number (ASN)  234
Azure Cloud Switch (ACS)  53

B
Baseboard Management Controller (BMC)  10
BGP configuration
   about  234
   network, building  235, 241
Border Gateway Protocol (BGP)  53
Border Gateway Protocol Autonomous System

Number (BGP ASN)  166
British Thermal Unit (BTU)  211
Brocade SDN Controller  80, 81, 82
Brocade Virtual Controller (BVC)  36
brownfield
   about  206
   versus greenfield  205

C
C++  88
cables
   about  23
   breakout cables  24
   copper cables  23
   fiber/hot pluggable cables  24
Central Office Re-Designed (CORD)  111
CI-specific terms
   service graph connector  264
Cisco ACI-specific terms



[ 291 ]

   about  263
   function node  264
   function node connectors  264
   service graph  264
   terminal node  264
Cisco ACI
   about  242
   design basics  243
   used, for designing network  209, 211, 212, 213
Cisco Discovery Protocol (CDP)  53
Cisco Nexus 3172  60, 61
Cisco Nexus 3232C  60
Cisco Nexus 9000  61, 62
Cisco Nexus 9300  278
Cisco Open SDN Controller  83
Class of Service (CoS)  53, 251
closed source NOS
   IOS  34
   Junos OS  34
Command-line Interface (CLI)
   about  15, 85
   ACI, configuring via  180
commercial controllers
   and security  276
common tenant  160
Computer Processing Unit (CPU)  67
concepts, ACI
   about  159
   APIC configuration  159
   concrete model  159
   contract  159
   logical model  159
   policy model  159
   tenants  160
concepts, API
   about  86
   Apache Thrift  88, 89
   REST  86, 87, 88
   SnapRoute  89, 90, 92, 93
control pane  10
core-aggregation design  225
curl
   interface, configuring  96

D
Data Center Network Management (DCNM)  61
data plane  10
Dell Z9100-ON  63, 64
Dell Z9500  64
Demilitarized/Demarcation Zone (DMZ)
   about  268
   designing  270
   implementing  270
Denial of Service (DoS)  265
Dense Wavelength Division Multiplexing (DWDM) 

12

designs
   about  224
   core-aggregation design  225
   leaf-spine design  225
   open hardware and software, using  226
Differentiated Services (DiffServ)  253
Differentiated Services Code Point (DSCP)  253
Direct Attach Cable (DAC)  9, 24, 207
Distributed Denial of Service (DDoS)  265
Distributed Virtual Switches (DvSwitch)  141

E
enclosed racks  204
End of Rack (EoR) switches  12, 139, 191
End User License Agreement (EULA)  145
Endpoint Group (EPG)  158, 160, 162, 243, 264
Equal-cost multi-path (ECMP)  53
equipment racks  204
examples, ext generation networking
   migration, from FDDI to 100Base-T  38
   NGN failure (LANE)  38
Explicit Congestion Notification (ECN)  251
External Gateway Protocol (EGP)  17

F
Facebook Open Switch System (FBOSS)  89, 97
Facebook Wedge 100  58
Fast Ethernet (FE)  38
Fiber Distributed Data Interface (FDDI)  37
Field Programmable Gate Arrays (FPGAs)  66
Field Replaceable Units (FRUs)  17
First In, First Out (FIFO)  254



[ 292 ]

Floodlight  117
Forwarding Information Base (FIB)  233
four post racks  204
Free Range Routing (FRRouting)  114
Front to Back (F2B)  205

G
generic  263
generic terms
   Application Delivery Controller (ADC)  264
   Deep Packet Inspection (DPI)  264
   Intrusion Detection System (IDS)  264
   service chain  264
   tap  264
   tap aggregator  264
generic traffic management
   about  251
   focused QoS functionality  251, 252
Gigabit Ethernet (GE) ports  60
greenfield and brownfield networks
   about  42
   network monitoring  44
   next generation hardware  42
   NFV  42
   tools  43
   traffic engineering  43
greenfield
   about  206
   versus brownfield  205
GUI
   ACI, configuring via  166, 167, 169, 171, 172,

174, 175, 177, 179
guiding constraints, REST
   cacheable  87
   client-server  87
   code-on-demand  87
   layerable  87
   stateless  87
   uniform interface  87

H
hardware and software decision, for network design
   24x7x365 full support  194
   business hours support  195
   importance  193

   open hardware-based designs  193
   proprietary hardware-based designs  193
   support needs  194
hardware providers, open source networking
   about  30
   hyperscale hardware  31
   hyperscale networking  31
hardware, from Cisco
   about  59
   Cisco Nexus 3172  60, 61
   Cisco Nexus 3232C  60
   Cisco Nexus 9000  61, 62
hardware, from Dell
   about  59
   Dell Z9100-ON  63, 64
Head-of-Line Blocking (HoLB)  38, 250
hierarchical QoS  255
Hierarchical Token Bucket (HTB)  254

I
Indigo Virtual Switch (IVS)  117
Indigo
   about  117
   connecting, with Floodlight  117, 121
   using  78
infrastructure tenant  160
Institute of Electrical and Electronics Engineers

(IEEE)  251
Interface Definition Language (IDL)  89
interface
   configuring, curl used  96
Interior Gateway Protocol (IGP)  18, 54
Intermediate System (IS)  22
Intermediate System to Intermediate System (IS-

IS)  54
Internet Exchange Points (IXPs)  38
Internet Protocol (IP)  251
Internet Relay Chat (IRC)  266
internet
   security, evolution  265
Internetwork Operating System (IOS)  33

J
Java  88
JavaScript  88



[ 293 ]

Joint Test Action Group (JTAG)  112
Juniper Network Operating System (Junos)  34

K
Kilo Pascals (kPa)  205

L
LAN Emulation (LANE)  38
leaf-spine design
   about  225
   reviewing  139, 141
Link Aggregation Group (LAG)  53
Link Layer Discovery Protocol (LLDP)  53
Linux Foundation (LF)  83
Location/ID Separation Protocol (LISP)  269

M
management tenant  160
Maximum Transmission Unit (MTU)  141
message bundling  77
Microsegmentation (uSeg)  277
Million packets per second (Mpps)  60
Model-driven Service Abstraction Layer (MD-SAL) 

121

modern network
   closed networking hardware  28
   closed networking software  28
   components  26
   defining  25
   designing  39, 41
   hyperscale networks  26
   next generation networking  26
   NFV  29
   open networking hardware  27
   open networking software  28
   scooping  41
   SDN  26
   traffic engineering  29
   virtualization  28
multidimensional designs, network design
   about  187
   multi-rack PoD design  189
   Point of Delivery (PoD)  187
   single-rack design  188

N
N9K-C9504-B1  211
Network Address Translation (NAT)  267
network behavior
   without QoS  250
network configuration
   Git  46
   program  45
   Really Awesome New Cisco confIg Differ

(RANCID)  45
network controller concepts
   about  15
   built-in processor  17
   controller  15
   Facebook Wedge microserver  17
   Juniper Routing Engine (RE)  17
   OpenFlow controller  16
   Supervisor module  16
network controllers
   used, for implementing security  272
network design concepts
   about  11
   Benes network  14
   Clos network  13
   leaf-spine design  12
   Local Area Network (LAN)  12
   Metro Area Network (MAN)  12
   Wide Area Network (WAN)  12
network design
   ACI, using  163
   fundamentals  187
   hardware and software, deciding on  193
   multidimensional designs  187
   Proof of Concept (PoC)  200
   Request for Information (RFI)  195
   Request for Quotes (RFQ)  195
Network Entity Titles (NETs)  22
Network Function Virtualization (NFV)  8, 68
network hardware designs, from OCP
   about  57
   Accton AS7712-32X  58
   Backpack  59
   Facebook's 6-pack  59
   Facebook/Accton Wedge 100  58



[ 294 ]

Network Operating System (NOS)  10, 139, 228
Network Operations Center (NOC)  266
Network Processor Units (NPUs)  66
Network Time Protocol (NTP)  53, 168
Network Virtualization Platform (NVP)  136
network
   assembling  220
   designing, Cisco ACI used  209, 211, 212, 213
   designing, RFI/RFQ information used  207
   designing, with NSX  138
   migrating to  221, 222
Next Generation Network (NGN)  7
next generation networking
   examples  8, 37
   routing and switching concepts  9
Next Generation Route Engines (NG-REs)  17
North American Network Operators Group

(NANOG)  266
NSX
   about  136
   features  153, 157
   NSX Controller  137
   NSX Manager  137
   used, for designing network  138
   used, for open or proprietary  245
   working with  147, 153

O
ONIE  52
ONL  53
ONOS  83
open compute networking software projects
   about  51
   ONIE  51, 52
   ONL  53
   SnapRoute  54, 56
   SONiC  53, 54
Open Compute Project (OCP)
   about  29, 48
   accepted open compute networking hardware  49
open network designing  216, 217, 219
Open Network Install Environment (ONIE)  29, 30
Open Network Linux (ONL)  34, 51, 114, 194, 232
Open Network Operating System (ONOS)
   about  133

   configuring  133
   installing  133
Open Network Switch Library (OpenNSL)  113
Open Networking (ON)  193
Open Networking Foundation (ONF)  111
Open Networking Lab (ON.Lab)  111
Open Networking Summit (ONS)  111, 113
Open Route Cache (ORC)  114, 194
Open Shortest Path First (OSPF)  54
open source network operating systems
   Open Network Linux (ONL)  34
   OpenSwitch  34
   SONic  35
open source networking
   hardware providers  30
Open Virtual Format (OVF)  143
Open Virtual Network (OVN)  138
Open vSwitch (OvS)  28, 256
Open-source software (OSS)  29
OpenDaylight
   about  80, 121
   Brocade SDN Controller  80, 81, 82
   Cisco Open SDN Controller  83
   installation link  122
   installation platform  122, 130
   used, for implementing security  274
OpenFlow agent
   capable OCP devices  79
   controllers, interacting  79
   Indigo, using  78
OpenFlow Data Plane Abstraction (OF-DPA)  113
   about  77, 113
   OpenFlow agent, using  78
OpenFlow, versions
   OpenFlow 1.0  71
   OpenFlow 1.1  72
   OpenFlow 1.2  74
   OpenFlow 1.3  75
   OpenFlow 1.4  75
   OpenFlow 1.5  76
OpenFlow
   configuration  115
   controller and agent, working  116
   designs  226
   growth  70



[ 295 ]

   history  67, 111
   internal workings  115
   issues, solving  114
   message layer  116
   overview  68, 69
   post  112
   prior hardware  112
   state machine  115
   system interface  116
   working  69
OSI layer
   data link layer  9
   network layer  9
   physical  9
Out of Band (OOB) EPGs  171

P
physical location
   about  205
   brownfield  206
   greenfield  206
Point of Delivery (PoD)  187
Points of Presence (POP)  42
Postman
   about  102
   reference  45
   SnapRoute's FlexSwitch configuration, displaying 

103, 107, 108, 109
   SnapRoute's FlexSwitch configuration, modifying 

103, 107, 108, 109
   URL  102
Priority Flow Control (PFC)  53
programmable network  66, 67
Proof of Concept (PoC)
   about  42, 200, 224, 269
   concluding  202
   designing  201
   executing  202
Python  88

Q
Quad Small Form-factor Pluggable (QSFP)  24
Quality of Service (QoS)
   about  43, 53, 202, 247
   example, in Linux  254

   example, in Windows  255
   hierarchical QoS  255
   in NSX  258, 260, 261
   in open source controllers  256
   utilizing  254

R
Rack Unit (RU)  17, 216
Random Early Detection (RED)  248
Really Awesome New Cisco confIg Differ (RANCID)
   reference  45
Representational State Transfer (REST)
   about  86
   ACI, configuring via  184
   features  86, 87
   guiding constraints  87
   standard operations  88
Request for Information (RFI)  195
Request for Quotes (RFQ)  195
RFI/RFQ information
   used, for designing network  207
Route Engine (RE)  16
router  10
Routing Information Base (RIB)  232
routing protocol
   about  17
   Border Gateway Protocol (BGP)  18
   Enhanced Interior Gateway Routing Protocol

(EIGRP)  23
   Intermediate System to Intermediate System (IS-

IS)  22
   Open Shortest Path First (OSPF)  20
   Routing Information Protocol (RIP)  23
Ruby  88

S
security
   ACI layer 4-7 service graph  278
   and open source controllers  273
   Cisco ACI, using  276
   implementing, with network controllers  272
   OpenDaylight, using  274
   VMware NSX, using  279
service chaining  272
Silicon Graphics International (SGI) Corp  49



[ 296 ]

Simple Network Management Protocol (SNMP)  86
Small Form-factor Pluggable (SFP)  24
SnapRoute's FlexSwitch
   configuration, displaying  105, 107, 108, 109
   configuration, modifying  105, 107, 108, 109
SnapRoute
   about  54, 89, 90, 92, 93
   BGP, configuring  234
   Cisco ACI  242
   used, for open hardware  232
Software Development Kit (SDK)  69, 112
Software for Open Networking in the Cloud

(SONiC)  30
software forwarding agents
   about  35
   FBOSS  36
   Indigo  35
   Open Route Cache (ORC)  36
   SwitchD  36
   SwitchDev  35
software providers, open source networking
   about  32
   Cisco's Bootloader  33
   closed source NOS  33
   commercial products  33
   forwarding agents  33
   ONIE  32
   open source network operating systems  34
   OpenBMC  33
   software controllers  36
   software forwarding agents  35
Software-defined Data Center (SDDC)  136
Software-defined Networking (SDN)  8, 133, 136
SONiC  53
switch  10
Switch Abstraction Interface (SAI)  30
Switch Port Analyzer (SPAN)  283

T
tail drop  248
tenants, Cisco
   common tenant  160
   infrastructure tenant  160
   management tenant  160
   user tenant  160

Terabits per second (Tbps)  58
Thrift API  97, 98, 99, 100
Tiny Core Linux (TCL)  51
Top of Rack (ToR) switches  12, 139, 190
traffic steering  267
traffic, mirroring
   inline tap, using  288
   SPAN port, using  284, 286
traffic
   mirroring, for device monitoring  283
two post racks  204

U
Ubuntu
   reference  123
uniform interface, REST
   functionalities  88
Universal Resource Identifiers (URIs)  85
User Interface (UI)  137
user tenant  160

V
Virtual Circuits (VCs)  43
Virtual Extensible LAN (VXLAN)  11
Virtual Firewall (vFW)  272
virtual Intrusion Detection System (vIDS)  275
Virtual Local Area Network (VLAN)  11
virtual Network Interface Card (vNIC)  279
VirtualBox
   reference  122
virtualization
   history  137
Virtualized Network Services (VNFs)  195
VMware NSX-specific terms
   about  263
   connection tracker table  265
   Distributed Firewall (DFW)  265
   rule table  265
   service composer  265
VMware NSX
   installation steps  143
   installing  141
VMware's Cloud, Network, and Security (vCNS) 

136

VMware



   origin  138
vSphere Installation Bundle (VIB)  137
VXLAN Tunnel Endpoint (VTEP)  11, 140

W
Wedge
   characteristics  58

Weighted Fair Queuing (WFQ)  248
Weighted Random Early Detection (WRED)  248
Weighted Round Robin (WRR)  248
wizards
   ACI, configuring via  182

Y
Yet Another Next Generation (YANG)  121


	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Open and Proprietary Next Generation Networks
	Examples of next generation networking
	Terms and concepts used in this book
	Routing and switching concepts
	Routers and switches
	Control plane
	Data plane

	VLAN/VXLAN
	Network design concepts
	Local Area Network (LAN)
	Metro Area Network (MAN)
	Wide Area Network (WAN)
	The leaf-spine design
	The Clos network
	The Benes network

	Network controller concepts
	Controllers
	The OpenFlow controller
	The Supervisor module
	Juniper Routing Engine
	Built-in processor
	Facebook Wedge microserver

	Routing protocols
	Border Gateway Protocol (BGP)
	Open Shortest Path First (OSPF)
	Intermediate System to Intermediate System (IS-IS)
	Enhanced Interior Gateway Routing Protocol (EIGRP)
	Routing Information Protocol (RIP)

	Cables
	Copper cables
	Fiber/hot pluggable cables
	Breakout cables



	What defines a modern network?
	Modern network pieces
	SDN
	Next generation networking and hyperscale networks
	Open networking hardware overview
	Open networking software overview
	Closed networking hardware overview
	Closed networking software overview
	Network virtualization
	NFV
	Traffic engineering

	The history of open hardware and software
	Hardware providers
	Hyperscale networking
	Hyperscale hardware

	Software
	ONIE
	Cisco's Bootloader
	OpenBMC
	Forwarding agents
	Commercial products
	Closed source NOS
	IOS
	Junos OS

	Open source network operating systems
	Open Network Linux (ONL)
	OpenSwitch
	SONiC

	Software forwarding agents
	SwitchDev
	Indigo
	FBOSS
	SwitchD
	Open Route Cache (ORC)

	Software controllers


	Next generation networking examples
	Example 1 – migration from FDDI to 100Base-T
	Example 2 – NGN failure (LANE)

	Designing a modern network
	Scoping
	Greenfield and brownfield networks
	Next generation hardware
	NFV
	Traffic engineering
	Tools
	Network monitoring

	Network configuration
	RANCID
	Postman
	Git


	Summary

	Chapter 2: Networking Hardware and Software
	Introducing the OCP
	Accepted open compute networking hardware
	Open compute networking software projects
	ONIE
	ONL
	SONiC
	SnapRoute

	Network hardware designs from the OCP
	Accton AS7712-32X
	Facebook/Accton Wedge 100
	Facebook's 6-pack and Backpack

	Hardware from Cisco and Dell
	Cisco Nexus 3232C
	Cisco Nexus 3172
	Cisco Nexus 9000
	Dell Z9100-ON
	Dell Z9500


	Summary

	Chapter 3: Exploring OpenFlow
	Active and programmable network concepts
	The history of OpenFlow
	An overview of OpenFlow
	How OpenFlow works
	The growth of OpenFlow
	OpenFlow 1.0
	OpenFlow 1.1
	OpenFlow 1.2
	OpenFlow 1.3
	OpenFlow 1.4
	OpenFlow 1.5


	Understanding OF-DPA – the open source OpenFlow agent from Broadcom
	Using an OpenFlow agent such as Indigo
	OpenFlow capable OCP devices

	How controllers interact with OpenFlow agents

	OpenDaylight
	Brocade SDN Controller
	Cisco Open SDN Controller

	ONOS
	Summary

	Chapter 4: Using REST and Thrift APIs to Manage Switches
	API concepts
	REST
	Apache Thrift
	SnapRoute – a RESTful API programmable routing stack
	Configuring an interface
	Thrift


	Summary

	Chapter 5: Using Postman for REST API calls
	Showing and modifying the configuration of SnapRoute's FlexSwitch via Postman
	Summary

	Chapter 6: OpenFlow Deep Dive
	History of OpenFlow
	Before OpenFlow
	After OpenFlow
	OF-DPA
	PicaOS
	Open Network Linux


	What issues does OpenFlow solve?
	Internal workings of OpenFlow
	Configuration
	State machine
	Message layer
	System interface

	How an OpenFlow controller and agent work together
	Floodlight
	Indigo
	Connecting Indigo and Floodlight together


	About OpenDaylight
	Installing OpenDaylight
	Installation platform

	ONOS
	Installing and configuring ONOS

	Summary

	Chapter 7: VMware NSX
	NSX
	NSX Manager
	NSX Controller

	The history of virtualization
	Where VMware came in
	The difference between NSX, ACI, and OVS


	How to design a network using NSX
	Review of the leaf-spine design

	Installing VMware NSX
	Installation steps
	Working with NSX
	A walkthrough of other NSX features


	Summary

	Chapter 8: Cisco ACI
	ACI terminologies and concepts
	Contracts
	APIC configuration
	Policy model
	Logical model
	Concrete model
	Tenants

	EPGs
	ACI modes
	ACI requirements
	Network design using ACI
	Configuration via the GUI
	Configuration via the CLI
	Configuration via wizards
	Configuration via REST

	Summary

	Chapter 9: Where to Start When Building a Next Generation Network
	Network design fundamentals
	Multidimensional designs
	PoD
	Single-rack design
	Multi-rack PoD design

	Deciding on the hardware and software
	Proprietary hardware-based designs
	Open hardware-based designs
	Support needs
	24x7x365 full support
	Business hours support


	Request for Information (RFI) and Request for Quotes (RFQ)
	Proof of Concept (PoC)
	Designing a PoC
	Running a PoC
	Finishing up a PoC


	Summary

	Chapter 10: Designing a Next Generation Network
	Terminologies used in this chapter
	Equipment racks – two post, four post, and enclosed
	Airflow
	New versus old or greenfield versus brownfield

	Physical location
	New location – greenfield
	Old location – brownfield

	Using RFI/RFQ information to design the network
	Designing using the Cisco ACI
	Designing using open network hardware

	Assembling the network
	Putting the parts in place

	Migrating to the new network
	Summary

	Chapter 11: Example NGN Designs
	Designs used in this chapter
	Leaf-spine design
	Core-aggregation design
	Using open hardware and software
	OpenFlow designs
	Open hardware with SnapRoute
	Configuring BGP
	Building the network


	Cisco ACI
	Design basics

	Open or proprietary network with NSX

	Summary

	Chapter 12: Understanding and Configuring Quality of Service
	QoS
	Network behavior without QoS
	Generic traffic management
	Layer 2 – focused QoS functionality
	Layer 3 – focused QoS functionality


	Utilizing QoS
	Example of QoS in Linux
	Example of QoS in Windows
	Hierarchical QoS

	QoS in open source controllers
	QoS in NSX
	Summary

	Chapter 13: Securing the Network
	Terminology used in this chapter
	Generic terms
	Cisco ACI-specific terms
	VMware NSX-specific terms

	The evolution of security on the internet
	Traffic steering

	Demilitarized/Demarcation Zone (DMZ)
	Designing a DMZ
	Implementing the DMZ

	Using network controllers to implement security
	Open source controllers and security
	Security using OpenDaylight

	Commercial controllers and security
	Security using Cisco ACI
	ACI layer 4-7 service graph

	Security using VMware NSX

	Mirroring traffic to a monitoring device
	Using a SPAN port
	Using an inline tap


	Summary

	Index



